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Abstract

Information extraction is a process that extracts limited semantic concepts from text documents

and presents them in an organized way. Unlike several other natural language tasks, information

extraction has a direct impact on end-user applications. Despite its importance, information ex-

traction is still a difficult task due to the inherent complexity and ambiguity of human languages.

Moreover, mutual dependencies between local predictions of the target concepts further increase

difficulty of the task. In order to enhance information extraction technologies, we develop general

approaches for two aspects –relational feature generationandglobal inference with classifiers.

It has been quite convincingly argued that relational learning is suitable in training a compli-

cated natural language system. We propose a relational feature generation approach that facilitates

relational learning through propositional learning algorithms. In particular, we develop a relational

representation language to produce features in a data driven way. The resulting features capture the

relational structures of a given domain, and therefore allow the learning algorithms to effectively

learn the relational definitions of target concepts.

Although the learned classifier can be used to directly predict the target concepts, conflicts

between the labels of different target variables often occur due to imperfect classifiers. We propose

an inference framework to correct mistakes of the local predictions by using the predictions and

task-dependent constraints to produce the best global assignment. This inference framework can

be modeled by a Bayesian network or integer linear programming.

The proposed learning and inference frameworks have been applied to a variety of information

extraction tasks, including entity extraction, entity/relation recognition, and semantic role labeling.
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Chapter 1

Introduction

Information extraction is a process that extracts limited semantic concepts from text documents,

and presents them in an organized way, such as database tables. While information extraction

covers a wide range of text processing problems, the target concepts are often both entities and

the relations among the entities. The types of entities may have universal definitions such as

person, location, ororganization, which appear in different kinds of documents. On the other hand,

entities can have definitions depending on the task at hand and apply to only certain collections of

documents. For instance, given a collection of seminar announcements, the goal may be to locate

thestarting time, location, andspeakerof each seminar.

Similarly, the number of relation types among entities can vary. It can be a small set, such as

whether a location is theheadquarterof an organization and if the extracted location and speaker

refer to thesameseminar. It can also be a large set, such as in the task ofsemantic role label-

ing (Kingsbury & Palmer, 2002), where each verb in a sentence represents a relation, and the goal

is to identify its argument entities as defined in the templates (i.e., the frame files).

Unlike several other natural language tasks such as part-of-speech tagging or syntactic parsing,

information extraction is either the end-user application or the task that has an immediate impact

on the end-user application. For a knowledge discovery system (e.g., Craven, DiPasquo, Freitag,

McCallum, Mitchell, Nigam, & Slattery, 1998) that aims tounderstandthe documents, and thus

transfer the Web into Semantic Web, information extraction is the key technology for discovering

the concepts of interest hidden in the text collection. For an open-domain question answering
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system (Voorhees, 2000), where the goal is often to find specific entities or relations defined in the

question, the correctness of information extraction directly determines the system performance.

Despite its importance, information extraction is in general, still a difficult task. As in other

natural language processing problems, the main difficulty comes from the inherent complexity

and ambiguity of human languages. Early information extraction systems relied on linguistic and

domain experts to hand-craft rules for each target concept. The performance of such systems highly

depends on the expertise and experience of the knowledge engineers. In addition, it is difficult to

extend the systems to new domains since they often do not scale and must be re-engineered with

different expert knowledge – a tedious process that requires tremendous man power.

Since late 90s, various machine learning based information extraction systems have been built

by training different models using annotated corpora (e.g., Califf & Mooney, 1999; Freitag &

McCallum, 2000; Craven & Slattery, 2001). As in many other machine learning based systems,

the performance is not only decided by the learning algorithm, but is also remarkably biased by

the quality of feature functions. Although feature engineering is not as arduous as crafting rules,

the complexity of finding and implementing good features is often overlooked and not reported.

Another aspect of information extraction involves the mutual dependencies that exist among the

predictions of various target concepts. For instance, constraints exist among the labels of a relation

and its argument entities. Producing a coherent global assignment to the variables representing

different target concepts is nontrivial because the number of possible global assignments grows

exponentially in the number of variables.

In order to enhance information extraction technologies, we develop general approaches for

two aspects –relational feature generationto facilitate learning complicated concepts and efficient

feature generation, andglobal inference with classifiersto exploit the mutual dependencies in the

domain.

Relational feature generation Because of the complexity in natural language, it has been quite

convincingly argued that relational learning is suitable in training a natural language system (Mooney,

2



1997). The natural method for relational learning isinductive logic programming(Lavrac & Dze-

roski, 1994), which extracts features implicitly during the learning process. Alternatively, we

develop an approach for relational learning that allows for the representation and learning of rela-

tional information using propositional means. As a result, the features are able to both represent the

relational structures in a given domain and and provide a suitable representation for propositional

learning algorithms to effectively learn the relational definitions of target concepts.

Inference with classifiers Although the learned classifier can be used to directly predict the tar-

get concepts, conflicts between the labels of different target variables often occur due to imperfect

classifiers. For example, when a relation is predicted asheadquarter, neither of its two entity ar-

guments can beperson. Such knowledge is encoded as constraints that may vary as the problem

domain changes.

We propose an inference framework to correct mistakes of the local predictions by using the

predictions and task-dependent constraints to produce the best global assignment. We develop

two approaches for this problem. The first models the labels of the target concepts as random

variables in a Bayesian network (Pearl, 1988). Finding the best assignment is defined as finding

the assignment that maximizes the joint probability. The second approach treats this problem as

an optimization problem solved using integer linear programming program. This approach allows

us to efficiently incorporate domain and task specific constraints at decision time, resulting in

significant improvements in the accuracy and the “human-like” quality of final predictions.

1.1 Overview

The rest of this dissertation are organized as follows. Chapter 2 presents some fundamental tools

and approaches used in different information extraction tasks, which include the machine learning

system SNoW (Carleson, Cumby, Rosen, & Roth, 1999), Bayesian networks (Pearl, 1988), and

integer linear programming (Wolsey, 1998).

3



Chapter 3 describes our framework for relational feature generation. We develop a relational

representation language along with a relation generation function to produce features in a data

driven way; together, these allow for efficient representation of the relational structure in a given

domain, in a way that is suitable for use by propositional learning algorithms. This framework

serves as the basic feature generation mechanism, and supports all the learning systems described

in the following chapters.

Chapter 4 first applies our learning framework based on relational feature generation to domain

specific information extraction tasks. It aims to fill predefined templates with phrases extracted

from documents of the same sort. We show results onseminar announcementandjob postingdata

sets.

Chapter 5 develops a general framework for recognizing relations and entities in sentences,

while taking mutual dependencies among them into account. For example, thekill (KFJ, Os-

wald) relation in: “J. V. Oswald was murdered at JFK after his assassin,

R. U. KFJ... ” depends on identifying Oswald and KFJ aspeople, JFK being identified as

a location, and thekill relation between Oswald and KFJ; this, in turn, enforces our belief that

Oswald and KJF arepeople.

We develop two inference approaches: the first based on Bayesian network and the second

using integer linear programming. We evaluate both approaches in the context of simultaneously

learning named entities and relations. Our approaches allow us to efficiently incorporate domain

and task specific constraints at decision time, resulting in significant improvements in the accuracy

and the “human-like” quality of the inference.

Chapter 6 addresses the problem ofsemantic role labeling, which can be treated as an extended

version of relation recognition. In this chapter, we present a general framework for semantic

role labeling. It combines a machine learning technique with an inference procedure based on

integer linear programming that incorporates linguistic and structural constraints into the decision

process. The system is tested on the data provided in the CoNLL-2004 shared task on semantic role

labeling and achieves very competitive results. In addition, we experimentally study the necessity
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of syntactic parsing for semantic role labeling. As a result, we develop a state-of-the-art semantic

role labeling system by combining several systems based on different full parse trees.

Finally, Chapter 7 concludes this dissertation and provides several directions for future re-

search.
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Chapter 2

Background

This chapter briefly introduces some fundamental tools or approaches that are used in different

tasks. Section 2.1 describes the learning system SNoW, which is applied to all the classification

tasks in this dissertation. In order to solve the global inference problem over classifiers, we have

developed two different approaches based on Bayesian networks (used in Chapter 5) and integer

linear programming (used in Chapter 5 and 6), which are described in Section 2.2 and Section 2.3,

respectively.

2.1 Sparse Network of Winnows (SNoW)

SNoW 1(Sparse Network of Winnows) (Roth, 1998; Khardon, Roth, & Valiant, 1999; Carleson,

Cumby, Rosen, & Roth, 1999) is a multi-class learning architecture that is specifically tailored for

large scale learning tasks. It is suitable for learning in a high dimensional feature space, especially

when the input examples are sparse. Its architecture is a two-layer sparse network of linear func-

tions. The nodes in the first layer (feature nodes) represent the input features, and are allocated in a

data-driven way, given the variable length examples. The nodes in the second layer (target nodes)

represent the target classes, which are linear functions over a common feature space. The weights

of the linear functions are stored on the links between the target nodes and feature nodes. The

network is sparse in that a link only appears when the corresponding feature is active frequently

1available at http://l2r.cs.uiuc.edu/∼cogcomp
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enough given the target class in training examples.

Learning in SNoW proceeds in an on-line fashion. Every example is treated independently by

each target subnetwork. Every labeled example is treated as positive to the target node correspond-

ing to its label, and as negative to all others, in a one-vs-all manner. Each example is used once to

refine the weights and then discarded. At prediction time, given an input example which activates

a subset of the input nodes, the information propagates through all the subnetworks; the target

node that produces the highest activation value determines the prediction (i.e., a winner-take-all

policy2).

SNoW employs several linear update rules including Perceptron, naive Bayes, and Winnow (a

variation of (Littlestone, 1988)). Winnow is a mistake driven on-line algorithm that is similar to

Perceptron (Rosenblatt, 1962), but updates its weights in a multiplicative way. Its key advantage

is that the number of examples required to learn the target function grows linearly in the number

of relevant features, but only logarithmically in the total number of features.

Regularization in SNoW can be achieved in the following two types of modifications in the

Winnow and Perceptron update rules. The first one is to learn a “thick hyperplane” in the binary

classification problem represented by each subnetwork. This modification is similar to the idea of

margin Perceptron (Li, Zaragoza, Herbrich, Shawe-Taylor, & Kandola, 2002), and it is not difficult

to show that the mistake bound still depends on the margin of the data in addition to the thickness

parameter. The other modification implemented in SNoW is the idea of “voted Perceptron” (Freund

& Schapire, 1999). Instead of using the final weight vector as the hypothesis, the averaged vector

of all intermediate weights during training is generated as output. Both approaches have shown

their effectiveness in practice, and can be applied jointly.

While SNoW is usually used as a classifier and predicts using a winner-take-all mechanism

over the activation values of the target classes, the activation values can also help in estimating the

posteriors of each class given the features. The raw activation value SNoW outputs is the weighted

linear sum of the features. It can be verified that the activation values are monotonic with the
2SNoW actually supports a more general multi-class framework (Har-Peled, Roth, & Zimak, 2002).
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confidence in the prediction, therefore is a good source of probability estimation.

We use the softmax (Bishop, 1995) function over the raw activation values as the conditional

probability estimation. Specifically, suppose the number of classes isn, and the raw activation

value of classi is acti. The posterior estimation for classi is derived by the following equation.

pi =
eacti∑n

j=1 eactj

SNoW has been shown to be successful in a variety of natural language and computer vision

tasks (Roth, 1998; Roth & Yih, 2001; Golding & Roth, 1999; Roth, Yang, & Ahuja, 2000; Roth,

Yang, & Ahuja, 2002). More discussion of SNoW can be found in (Carleson, Cumby, Rosen, &

Roth, 1999; Roth, 1998; Carlson, Rosen, & Roth, 2001) and its user manual (Carlson, Cumby,

Rosen, Rizzolo, & Roth, 2004).

2.2 Bayesian Network

Broadly used in the AI community,Bayesian network(also known asbelief network) is a graph-

ical representation of a joint probability distribution (Pearl, 1988). It is a directed acyclic graph

(DAG), where the nodes are random variables and a link from nodeA to nodeB can be concep-

tually viewed asA causesB. Each node in a Bayesian network is associated with a conditional

probability table (CPT), which defines the conditional probability distribution given its parents. In

addition, the variable is conditionally independent of other variables given its parent node.

Suppose a Bayesian network consists of variablesX1, X2, . . . , Xn. Because of the property of

conditional independence, the joint probability can be factorized as

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi|Parent(Xi)),

whereParent(Xi) are the parent nodes of variableXi. If X1, X2, . . . , Xn are binary variables,

andk is the maximum number of the parent nodes that a node can have, then the space needed
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for storing these CPTs isO(n · 2k), which is much less than the size of storing explicitly the joint

probabilities,O(2n). Therefore, a Bayesian network provides a compact way to represent the joint

probabilities.

Given a Bayesian network, there are several interesting types of inference tasks. For example,

given the evidence, what is the probability of the most likely cause? Another example is, what

is the probability distribution of a specific variableXi? Among those inference tasks, the most-

probable-explanation (MPE) inference problem, which is to find the assignment to all the variables

in the Bayesian network that maximizes the joint probability is often the most interesting one.

Since a Bayesian network uniquely defines a joint probability distribution, conceptually we

can answer all the inference queries by marginalization. However, given the exponential number

of joint variable assignments, the brute-force approach is usually not feasible in practice. For

instance, the MPE problem can be solved by Pearl’s belief propagation algorithm (Pearl, 1988) in

linear time if the network is singly connected (i.e. network without undirected cycles, or loops),

but it is intractable (Roth, 1996) in general.

Recently, researchers have achieved great success in solving the problem of decoding messages

through a noisy channel with the help of Bayesian networks (MacKay, 1999). The network struc-

ture used in the problem is a loopy bipartite DAG. The inference algorithm used is Pearl’s belief

propagation algorithm (Pearl, 1988), which outputs exact posteriors in linear time if the network is

singly connected (i.e., without loops) but does not guarantee to converge for loopy networks. How-

ever, researchers have empirically demonstrate that by iterating the belief propagation algorithm

several times, the output values often converge to the right posteriors (Murphy, Weiss, & Jordan,

1999).

2.3 Linear Programming Formulation

Linear programming (LP) formulation is a powerful tool for optimization, and has been used in

the global inference procedure in several tasks in this dissertation. In this section, we first briefly
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introduce the basic idea of linear programming, followed by the description of integer linear pro-

gramming. Different techniques of solving integer linear programming problems will also be dis-

cussed.

2.3.1 Linear Programming

Given a finite number of linear equality and inequality constraints,linear programmingis the

process of searching a solution that satisfies the constraints and minimizes (or maximizes) a linear

cost function.

Let x, c ∈ Rn,b ∈ Rk,d ∈ Rl, A is ak × n matrix, andC is a l × n matrix. A general linear

program has the following form.

min c · x

subject to Ax = b

Cx ≤ d

x1 ≥ 0, · · · , xr ≥ 0

xr+1 6= 0, · · · , xn 6= 0

Eitherk or l can be 0 and1 ≤ r ≤ n.

By introducing slack variables, a general linear program can be easily transformed into the

following two special forms.

Standard form: min c · x

s.t. Ax = b

x ≥ 0
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Canonical form: min c · x

s.t. Ax ≥ b

x ≥ 0

That is, in the standard form, only equality constraints are allowed, while in the canonical form,

only inequality constraints are allowed. The variables in both forms are sign-constrained (i.e.,

x ≥ 0).

The constraints in linear programming define afeasible solution space. Although it is generally

infinite, linear programming can be solved efficiently because an optimal solution only occurs at

extreme points. We introduce this theorem starting from the following definitions.

Definition 2.3.1 (Convex Set)A subsetS of Rn is calledconvexif for any two distinct pointsx1

andx2 in S, any point

x = λx1 + (1− λ)x2, 0 ≤ λ ≤ 1

is also inRn.

Definition 2.3.2 (Convex Combination) A pointx ∈ Rn is a convex combinationof the points

x1,x2, . . . ,xr ∈ Rn, if

x =
r∑

i=1

cixi

for some real numbersc1, c2, . . . , cr which satisfy

r∑
i=1

ci = 1 andci ≥ 0, 1 ≤ i ≤ r

Theorem 2.3.1 The set of all convex combinations of a finite set of points inRn is a convex set.

Because the constraints in linear programming are linear, we have the following theorem.

Theorem 2.3.2 The feasible solution space of linear programming is a convex set.
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Definition 2.3.3 (Extreme Point) A pointx in a convex setS is called anextreme point(or vertex)

of S if there are no distinct pointsx1 andx2 such that

x = λx1 + (1− λ)x2, 0 < λ < 1.

Theorem 2.3.3 Let S be the feasible solution space of a linear programming problem. IfS is

nonempty and bounded, then an optimal solution to the problem exists and occurs at an extreme

point.

The geometric idea of extreme points can be found though simple algebraic operations. Here

we investigate their relation. Consider the following linear program in its standard form

Standard form: min c · x (2.1)

s.t. Ax = b (2.2)

x ≥ 0, (2.3)

whereA is anm× n matrix of rankm, m ≤ n, c,x ∈ Rn, andb ∈ Rm.

Let the columns ofA be denoted byA1,A2, . . . ,An. We can then write (2.2) as

x1A1 + x2A2 + · · ·+ xsAs = b (2.4)

Definition 2.3.4 (Basic Solution & Basic Feasible Solution)Given the above linear program, if

columnsj1 < j2 < · · · < jm are linearly independent, then the solutionx′ to (2.2)

x′j1Aj1 + x′j2Aj2 + · · ·+ x′jm
Ajm = b

is called abasic solution, and variablesxj1 , . . . , xjm are calledbasicvariables. Any variablexl

wherel /∈ {j1, . . . , jm} is set to 0 and is callednonbasic. A basic solutionx′ is called abasic

feasible solution(or bfs for short) if it satisfies (2.3) (i.e.x′ ≥ 0).
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A basic solution can be derived as follows. LetB be the nonsingular submatrix consists of columns

j1, j2, . . . , jm of A. B−1b is the solution to the basic variables. Basic solutions are important

because of the following theorem.

Theorem 2.3.4 LetS be the convex set of the feasible solution space defined by (2.2) and (2.3). A

pointx′ ∈ Rn is an extreme point ofS if and only ifx′ is a basic feasible solution.

Because there are only finitely many extreme points in the feasible solution space formed by a

linear program. An optimal solution can be found by exhaustively checking the value of the cost

function on each basic feasible solution.

In fact, the well-knownSimplex Algorithmdesigned by G. Dantzig in 1947 is based on this

idea. Starting from abfs, the Simplex Algorithm repeatedly checks the neighboring points, where

only one basic variable differs. It can be shown that once the algorithm finds a local minimum, it

is also a global minimum, and therefore the optimal solution to the linear programming problem.

2.3.2 Integer Linear Programming

Integer linear programming(ILP) or integer programmingis the problem of linear programming

that requires the solution to be integer. Similar to the standard and canonical forms of linear

programming, we can have the following forms of integer linear programming.

min{c · x|Ax = b,x ≥ 0,x integer} (2.5)

min{c · x|Ax ≤ b,x ≥ 0,x integer} (2.6)

Integer linear programming in general is NP-hard. However, when the problem size is within

hundreds of variables and constraints, it can usually be solved efficiently by commercial numerical

packages, such as Xpress-MP (2004) or CPLEX (2003). We introduce some general strategies of

solving an integer linear programming problem here.
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Linear Programming Relaxation (LPR)

To solve an ILP problem, a natural idea is torelax the integer constraints by dropping such con-

straints, and tries to find the solution using a general linear programming solver.

If LPR returns an integer solution, then it is also the optimal solution to the ILP problem. If the

solution is non-integer, then at least it gives an lower bound to the value of the cost function, which

can be used to modify the problem in order to get closer to an optimal integer solution. A direct

way to handle the non-integer solution is calledrounding, which finds an integer point that is close

to the non-integer solution, and hopefully still maintains the small cost. To find a good rounding

method is not always easy, and the cost may deviates from the optimal value a lot. When the cost

function is in some specific form and satisfies some conditions, a well designed rounding algorithm

can be shown that the rounded solution is a good approximation to the optimal solution (Kleinberg

& Tardos, 1999; Chekuri, Khanna, Naor, & Zosin, 2001). Nevertheless, in general, the outcome of

the rounding procedure may not even be a legal solution to the problem.

Branch & Bound and Cutting Plane

Branch and boundis the method that divides an ILP problem into several LP subproblems. It uses

LPR as a subroutine to generate dual (upper and lower) bounds to reduce the search space, and finds

the optimal solution as well. When LPR finds a non-integer solution, it splits the problem on a non-

integer variable. For example, suppose variablexi is fractional in a non-integer solution to the ILP

problemmin{cx : x ∈ S, x ∈ {0, 1}n}, whereS is the linear constraints. The ILP problem can be

split into two sub LPR problems,min{cx : x ∈ S ∩ {xi = 0}} andmin{cx : x ∈ S ∩ {xi = 1}}.

Since any feasible solution provides an upper bound and any LPR solution generates a lower bound,

the search tree can be effectively cut.

Another strategy of dealing with non-integer points, which is often combined withbranch &

bound, is calledcutting plane. When a non-integer solution is given by LPR, it adds a new linear

constraint that makes the non-integer point infeasible, while still keeps the optimal integer solution
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in the feasible region. As a result, the feasible region is closer to the ideal polyhedron, which is the

convex hull of feasible integer solutions. The most famous cutting plane algorithm is Gomory’s

fractional cutting plane method (Wolsey, 1998), which can be shown that only finite number of

constraints are needed. In addition, researchers have developed different cutting plane algorithms

for different types of ILP problems. One example is (Wang & Regan, 2000), which only focuses

on binary ILP problems.

Although in theory, a search based strategy may need several steps to find the optimal solution,

LPR often generates integer solutions in our experiments in this dissertation. This phenomenon

may link to the theory ofunimodularity.

Unimodularity

When the coefficient matrix of the linear program, either in its standard or canonical form, satisfies

certain properties calledunimodularor totally unimodularrespectively, the linear program always

has an optimal integer solution (Schrijver, 1986). In other words, LPR is guaranteed to produce an

integer solution.

Definition 2.3.5 (Unimodular) A matrixA of rankm is calledunimodularif all the entries ofA

are integers, and the determinant of every square submatrix ofA of orderm is in 0,+1,-1.

Definition 2.3.6 (Totally Unimodular) A matrixA of rankm is calledtotally unimodularif the

determinant of every square submatrix ofA is in 0,+1,-1.

Obviously, a totally unimodular matrix is also a unimodular matrix.

Theorem 2.3.5 (Veinott & Dantzig) Let A be an(m, n)-integral matrix with full row rankm.

Then the polyhedron{x|x ≥ 0;Ax = b} is integral for each integral vectorb, if and only ifA is

unimodular.

Theorem 2.3.5 indicates that if a linear program is in its standard form, then regardless of the

cost function and the integral vectorb, the optimal solution is integral if and only if the coefficient
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matrixA is unimodular.

The reason is that the values of the basic variables in a bfs of a linear program always has the

following form:

B−1 · b =
adj(B)

||B||
· b, (2.7)

whereB is a non-singular square submatrix ofA of order m. Since||B|| is either +1 or -1,

and the optimal solution only appears on extreme points (i.e., basic feasible solutions), this linear

programming problem can only have integer solutions.

For the canonical form of a linear program, we also have a similar theorem.

Theorem 2.3.6 (Hoffman & Kruskal) LetA be an(m, n)-integral matrix with full row rankm.

Then the polyhedron{x|x ≥ 0;Ax ≤ b} is integral for each integral vectorb, if and only ifA is

totally unimodular.

Note that even if the coefficient matrix is not unimodular or totally unimodular, an LP-solver

can still always return integer solution given a special coefficient matrixA, a specific vectorb, or

a cost function with certain properties.
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Chapter 3

Relational Learning via Propositionalization

This chapter develops a new propositionalization approach for relational learning which allows for

efficient representation and learning of relational information using propositional means. We de-

velop a relational representation language, along with a relation generation function that produces

features in this language in a data driven way; together, these allow efficient representation of the

relational structure of a given domain in a way that is suitable for use by propositional learning al-

gorithms. We use the language and generation functions within a learning framework that is shown

to learn efficiently and accurately concept representations in terms of the relational features. The

framework is designed to support learning in domains that are relational but where the amount of

data and size of representation learned are very large. It suggests different tradeoffs than those in

the traditional Inductive Logic Programming (ILP) approaches and existing propositionalization

methods and, as a result, it enjoys several advantages over it. In particular, our approach is scalable

and flexible and allows the use of any propositional algorithm, including probabilistic algorithms,

within it.

3.1 Overview

Relational learning is the problem of learning structured concept definitions from structured exam-

ples. The data in a variety of AI problems such as natural language understanding related tasks,

visual interpretation and planning, are often described by a collection of objects along with some

17



relations that hold among them. The fundamental problem is to learn definitions for some relations

or concepts of interest in terms of properties of the given objects and relations among them. Ex-

amples include identifying noun phrases in a sentence, detecting faces in an image, and defining

a policy that maps states and goals to actions in a planning situation. In many of these cases, it

is natural to represent and learn concepts relationally; propositional representations might be too

large, could lose much of the inherent domain structure and consequently might not generalize

well. In recent years, this realization has renewed interest in studying relational representations

and learning.

Inductive Logic Programming (ILP) is an active subfield of machine learning that addresses

relational learning and is a natural approach to apply to these tasks. In principle, ILP methods

allow induction over relational structures and unbounded data structures. However, studies in ILP

suggest that unless the rule representation is restricted, the learning problem is intractable (Kietz

& Dzeroski, 1994; Cohen, 1995; Cohen & Page, 1995). Thus, different heuristics are used in ILP

methods (Muggleton & De Raedt, 1994; Cussens, 1997; Quinlan, 1990) to control the search, and

learn the concept efficiently.

Propositionalization (Kramer, Lavrac, & Flach, 2001), a framework that transforms original

relational representations to propositional features, is a different way to conduct relational learning.

In this approach, relational information is first captured and stored as propositions, according to

some predefined declarative bias. Propositional learning algorithms are then applied to learn using

thesenewfeatures. Although propositionalization has some inherent limitations, such as a claimed

inability to learn recurrent definition, it enjoys several advantages over traditional ILP methods. In

particular, it allows the use of general purpose propositional algorithms that have been well studied,

including probabilistic algorithms, but nevertheless learns relational representations.

In this chapter, we propose a relational learning framework that is best viewed as a specific

propositionalization method. At the center of our framework is a knowledge representation lan-

guage that allows one to efficiently represent and evaluate rich relational structures using proposi-

tional representations. This allows us to learn using propositional algorithms, but results in rela-
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tional concept descriptions as outcome.

Our framework decouples the feature extraction stage from the learning stage thus providing a

generic and flexible language for defining declarative bias for propositionalization. A design with

careful consideration of efficiency allows feature types defined by our language to be extracted

rapidly. As we will see in later chapters, our propositionalization method serves as the main com-

ponent for feature generation, and extracts numerous features in different learning tasks in the NLP

domain. The next subsection provides a high-level view of this learning framework.

3.1.1 The Learning Framework

Our learning framework attempts to learn classifiers for relational learning problems by utilizing

propositional learning algorithms. The key to our propositionalization technique is the decoupling

of a data driven feature extraction stage and a feature efficient learning stage. The former makes

use of relation generation functions (RGF) which define “types” of features to be extracted. Along

with a specific target property of interest – a “label” (e.g., an attribute of the input or a relation

that holds in the input), an RGF maps a relational representation of the data to a propositional

representation with respect to this target. The latter uses a feature-efficient propositional learning

algorithm to learn a function that represents the target property in terms of the extracted features.

In our framework, as in ILP, observations in the domain are assumed to be represented as a

collection of predicates that hold in elements of the domain. Given this assumption, the task then

becomes producing a classifier that predicts whether a given predicate (target property) holds for

some particular observation. For example, we may wish to predict for some domain elementX

(e.g., a phrase in a sentence), if the predicatelocation(X), which indicates that the phraseX

represents a location, holds. Similarly, we may want to decide if the predicateauthor of(X, Y ),

which indicates thatX is the author ofY , holds, given some domain elementsX, Y .

To accomplish this task using propositional learning algorithms, we must generate examples in

the form of lists of propositions (features) representing information that might be relevant to the

predicate to be learned. Propositions of this form may either be fully ground as in the predicate
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location(US) or individually quantified as in the predicate∃Xauthor of(Roth,X) ∧ book(X).

Each list of propositions, generated to represent the input observation with respect to the target

element, serves as a positive example for a predicate that holds in the target, and can also serve

as a negative example for the existence of “competing” predicates (i.e., different classes). These

examples are used to train a classifier that defines a mapping from instances in this features space

to one of the possible values the target predicate can take.

In order to facilitate efficient feature generation that captures the relational information among

the domain elements, we define a language that extends ideas presented first in (Cumby & Roth,

2000; Khardon, Roth, & Valiant, 1999). To apply this language, the relational data is first re-

represented as a graph, where each node is an element, and the edges define relations between two

elements. When learning whether a predicate holds among particular elements of interest, features

are generated from afocusof the attention region “near” the predicate to be learned. Therefore,

features produced depend on, and can be differentiated by, the target with respect to which they

are produced. Efficient feature extraction is achieved by restricting the syntax of the propositions.

In particular, thescopeof a quantifier is always a single predicate. More expressive propositions

are allowed by using the graphical structure of the domain representation.

We develop the notion ofrelation generation functions, which allows us to define the “type” of

features we would like to generate in order to abstract the properties of the domain and its relational

structure, relative to a specific element, and represent them as a propositional example in a data

driven way.

The feature extraction method we present operates with the so-called closed-world assumption:

it generates only the features judged to be active in the example by the relation generating function;

other features are judged to be inactive, or false and are not generated. Since it may be inefficient

or impossible to list all possible features that could be active for a particular interpretation, this is

very significant from a computational complexity perspective. As a result, our learning algorithm

should be able to accept examples of variable length. In addition, given a small set of “types”

of features, our method generates a large number of features, each time with respect to different
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ID Predicate logic representation Truth value
p1 Father(John , Tom) 1
p2 Mother(Tom, Mary ) 0
p3 Father(John , Tom) ∧Mother(Mary , Tom) 1
p4 (∃x Father(John , x )) ∨ ∃y Mother(y , Tom) 1
· · · · · · · · ·

Table 3.1: An example of propositionalization in the kinship domain

“focus” elements; therefore, our learning algorithm should be able to learn well in the presence of

a large number of irrelevant features.

3.2 Related Work – Propositionalization

Propositionalization is a transformation that maps a relational representation to features in propo-

sitional form (Kramer, Lavrac, & Flach, 2001). These features capture the relational information

and are usually stored as attributes in a vector, which forms an example provided to propositional

learners.

Consider, for example, the classical ILP problem of identifying kinship relations (Hinton, 1986;

Quinlan, 1990). SupposeTomis the only child ofJohn andMary . Numerous relational features

may be extracted as shown in Table 3.1.

Although generating a full propositional representation from a relational learning setting is

possible when the problem is in the simplest first-order form, where there is only one relation, the

transformation process itself is exponential in the number of parameters of the original learning

problem, such as the number of relations and the maximum number of rules in a hypothesis (De

Raedt, 1998). Therefore, without restrictions, the process of propositionalization is intractable.

Restrictions may be employed through the language bias in a logical representation, or through the

parameters in a graphical representation of the relational data. Below we briefly describe several

propositionalization approaches.
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LINUS, DINUS and SINUS LINUS (Lavrac, Dzeroski, & Grobelnik, 1991; Lavrac & Dzeroski,

1994) is the first published system that employs propositionalization. The language used by LI-

NUS comprises constrained function-free non-recursive Horn clauses with negation. The clauses

are constrained in the sense that all variables in the body also appear in the head. After proposition-

alization, each literal in the body is defined as a feature. For example, in the clause “son(X,Y)

:- male(X), parent(Y,X) ”, male(X) andparent(Y,X) are treated as features.

DINUS (Lavrac & Dzeroski, 1994) is the successor of LINUS. The main difference is that

it relaxes the language by allowing determinate non-constrained clauses. That is, if a literal in

the clause has a variable that does not appear in preceding literals, this variable can only have one

possible binding. An example of such a clause is “grandfather(X,Y) :- father(Z,Y),

father(X,Z) ”

The latest extension of the LINUS system, SINUS1 (Krogel, Rawles, Zelezny, Flach, Lavrac,

& Wrobel, 2003) takes flattened Prolog clauses (similar to those used in 1BC (Flach & Lachiche,

1999)) as its language. It generates features by examining literals in a clause from left to right.

For each new literal, SINUS tries to apply various predicates given the current bindings of the

variables. Users can restrict features by limiting the maximum number of literals, variables, etc.

WARMR WARMR (Dehaspe & Toivonen, 1999) is a system that detects Datalog queries that

succeed frequently. The language used in Datalog is similar to Prolog, but without function sym-

bols. A Datalog query is in the form “?- A1, . . . , An”, which is a conjunction of logical atoms

A1, . . . , An, and can be transformed to a relational feature. WARMR provides several options for

restraining the features generated. The basic mechanism is calledmode constraints, which can

require the variables in an atom to be bound before the atom is called (i.e., input variables), or

bound by the atom (i.e., output variables). Through type declarations, variable name sharing can

be constrained. In addition, the choice of atoms picked as features can depend on whether other

atoms appear or not.

1http://www.cs.bris.ac.uk/home/rawles/sinus/
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RSD RSD is a system designed for relational subgroup discovery (Lavrac, Zelezny, & Flach,

2003; Krogel, Rawles, Zelezny, Flach, Lavrac, & Wrobel, 2003). Its input language is very similar

to those used by the systems Aleph (Srinivasan & King, 1996) or Progol (Muggleton, 1995). Fea-

tures generated are constrained by defining variable typing, moding, setting arecall parameter etc.

For instance, a structural predicate declaration in the East-West trains domain (Michie, Muggle-

ton, Page, & Srinivasan, 1994) can be defined as “:-modeb(1,hasCar(+train, -car)) ”,

where the recall number 1 indicates that a feature can address at most one car of a given train.

The + and - signs assign input and output variables, respectively. RSD first generates an ex-

haustive set of features that satisfy the mode and setting declarations. A feature is a clause that

cannot be decomposed into a conjunction of two features, and does not contain constants. Given

this type of feature, users can further specify a type of variable that should be substituted with

a constant by using the special property predicateinstantiate . New features with constants

will then be constructed. For example, a constant-free feature with theinstantiate predicate

“ f(A) :- hasCar(A,B), hasLoad(B,C), shape(C,D), instantiate(D) ” will ex-

amine the constants that variableD can be bound, and may generate features like “f1(A) :-

hasCar(A,B), hasLoad(B,C),shape(C,rectangle) ”.

1BC 1BC (Flach & Lachiche, 1999) is a first-order Bayesian classifier that operates directly on

the relational data. Unlike the aforementioned approaches, propositionalization is done implicitly

and internally. 1BC uses an ISP (Individual, Structural predicate, and Property) representation

in flattened Prolog. It provides a well-defined notation forindividuals(e.g., a molecule in muta-

genicity prediction, or a phrase in a sentence) and distinguishes two kinds of predicates:properties

andstructural predicates. Informally, a property is a predicate that describes the attributes of an

individual, and a structural predicate is a binary predicate that denotes the relation between ob-

jects of two types. In addition, a language bias similar to themode constraintsin WARMR is also

provided. Take the East-West trains problem as example: the individual is the train; structural

predicates aretrain2car andcar2load , which describe the car associated with the train, and
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the load of a car respectively; properties include predicates likeshape (of a car), oreastbound

(the direction of a train).

1BC is implemented in the context ofTertius (Flach & Lachiche, 2001), which is a first-

order descriptive learner.Tertius searches for interesting conjunctions of literals as features.

The search is restricted to a maximum number of literals and of variables, and limited by the lan-

guage bias. Moreover, onlyelementaryfeatures are returned. A feature is elementary if it has only

one property. This is important because combining both elementary and non-elementary features

clearly violates the conditional independence assumption, which may degrade the performance of

the naive Bayes learner.

Graphical representation Different from the above mentioned approaches, which represent re-

lational data in logical languages, Bournaud, Courtine, and Zucker (2003) employed proposition-

alization on a graphical representation of the relational data. This graphical representation is a

subset of conceptual graphs (Sowa, 1984; Chein & Mugnier, 1992). In this formalism, a descrip-

tion of a relational data domain is a labeled directed graph with two types of vertices:concept

verticesandrelation vertices. The concept vertices are similar to the objects in a logical represen-

tation, and the relation vertices denote the relations between concepts. For example, a sub-graph

concepts → relationr → conceptt indicates that conceptss andt have the relationr.

The propositionalization process is restricted by parameterizingabstract relations. Given two

conceptsCs andCt in a graph, an abstract relationRa is denoted by the path betweenCs and

Ct. The level ofRa is defined by the number of relation vertices the path has. Depending on the

directions of edges in the path of an abstract relation, there are three types of canonical subgraphs:

sequence, star, andhole. Every sub-graph of these three types along with different levels (number

of edges) are then extracted as relational features. Note that this approach only allows binary

relations, and the features generated are variable-free.

Similar to this approach, Geibel and Wysotzki (1996) propose a method that also generates

features from a graphical representation. The relational features are derived from fixed-length paths
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in the neighborhood of a node in the graph. Objects represented by distant nodes are not of interest.

This approach also has some relations to (Cumby & Roth, 2002), which uses aconcept graph

representation, and discusses the equivalence to a logical (description logic based) representation.

Database oriented approaches A relational database is in fact a representation of relational

data. It can be modeled as a graph, where tables are the nodes and foreign key relationships are the

directed edges. Following the foreign key attribute, a dependent table points to the independent

table that has the corresponding primary key. Propositionalization is usually employed by using

aggregation operators, such asaverage, minimum, maximum, count, andsum. As a result, these

features are often numerical instead of boolean. Examples of this type of approaches include

RELAGGS (Krogel & Wrobel, 2001), and works in (Neville, Jensen, Friedland, & Hay, 2003;

Perlich & Provost, 2003).

In addition to the language bias or parameters used in the above propositionalization approaches,

feature selection or elimination is often applied as well. While most methods select features after

they are generated (Kramer & Frank, 2000; Kramer & De Raedt, 2001), some methods do it

during the constructing process (Alphonse & Rouveirol, 2000). For a more detailed survey and

comparison on different propositionalization approaches, interested readers can refer to (Kramer,

Lavrac, & Flach, 2001) and (Krogel, Rawles, Zelezny, Flach, Lavrac, & Wrobel, 2003).

Our propositionalization framework is based on a graphical representation which is similar to

(Bournaud, Courtine, & Zucker, 2003), but the features generated are constrained by a combina-

tion of the language bias and the graphical structure. In particular, our framework differs from

existing methods in two major respects. First, we define a language that allows users to param-

eterize preferences when constructing relational features. The language is designed with serious

consideration of efficiency. Specifically, only local binding of quantifiers is allowed, in order to

ensure rapid feature extraction. With the help of operators over the graphical structure, however,
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it is still possible to express complex features. These features are not limited to conjunctions but

rather constitute a much richer, yet restricted set of FOL expressions. Second, the mapping from

domains to graphs is very flexible, and allows multi-labeled nodes and edges. For instance, this

framework has been applied to problems such as the kinship problem, problems in computational

chemistry and other natural language problems, where domain elements are described as general

graphs (Cumby & Roth, 2002).

3.3 Propositional Relational Representations

In this section we present a knowledge representation language that has two components: (1) a

graphical representation of relational data, and (2) a subset of first order logic (FOL). A brief

summary of how to apply this language for propositionalization on two relational learning tasks is

also provided.

The language allows the encoding of first order representations and relational structures as

propositions and thus supports the use of general purpose propositional algorithms and probabilis-

tic algorithms, in learning definitions in terms of relational expressions. This approach extends

previous related constructions from (Lavrac, Dzeroski, & Grobelnik, 1991) and (Khardon, Roth,

& Valiant, 1999; Cumby & Roth, 2000), but technically is more related to the latter.

3.3.1 Graphical Representation of Relational Data

The relational data of interest constitutes thedomainof our language. A domain consists of ele-

ments and relations among these elements. Predicates in the domain either describe the relation

between an element and its attributes, or the relation between two elements.

Definition 3.3.1 (Domain) A domainD = 〈V , E〉 consists of a set of typed elements,V, and a set

of binary relationsE between elements inV. An element is associated with some attributes. When

two elements have different sets of attributes, we say that the two elements belong to different types.
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Elements in a domainD represent objects in the world. For example, in NLP applications these

might be words, phrases, sentences or documents. Predicates used inD can be categorized into two

types. One describes properties of these elements – the spelling of a word, the part-of-speech tag

of a word, a phrase type, etc. The other describes relations between (sets of) objects. For example,

word w1 is beforew2, w3 is thefirst word of phraseph1, etc. As usual, the “world” in which we

interpret the aforementioned constructs could be a single sentence, a document, etc.

Definition 3.3.2 An instanceis an interpretation (Lloyd, 1987) which lists a set of domain elements

and the truth values of all instantiations of the predicates on them.

Each instance can be mapped to a directed graph. In particular, each node represents an el-

ement in the domain, and each link (directed edge) denotes the relation that holds between the

two connected elements. This relational data representation is close to the conceptual graph for-

malism (Sowa, 1984; Chein & Mugnier, 1992; Bournaud, Courtine, & Zucker, 2003). Compared

to (Bournaud, Courtine, & Zucker, 2003), the relations between elements are represented as links

in the instance, while Bournaud et al. definerelation verticesto store the relation information.

In contrast to the ISP representation (Flach & Lachiche, 1999), theindividual is the same as the

instancehere.Propertiesare predicates that extract attributes of anelement. Structural predicates

are similar to the relations represented as links, although the elements may belong to the same type

in our case.

We provide the following two examples to illustrate this graphical representation. One is the

classical kinship example (Quinlan, 1990), and the other is a natural representation of text frag-

ments for many NLP problems.

Example 3.3.1 The instance of a family domain in Figure 3.1 shows the kinship of several people,

which are represented by the nodes. In addition, each node is associated with a set of attributes,

like name, gender, and age. Each link in the graph shows the relation between two people. For

example,n4 is thefather ofn3, who is also asonof n2. In this domain, all objects belong to the

same type.
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n
2

Name Mary

Gender female

Age 35

n
3

Name ?

Gender male

Age 5

n
4

Name ?

Gender male

Age 38

mother

mother mother
grandmother

n
5

Name Ann

Gender female

Age ?

aunt

father

sonson

n
6

Name Tina

Gender female

Age ?

brother

sister

n
1

Name ?

Gender male

Age 60

father daughter

Figure 3.1: An instance of the kinship domain: each node (element) represents a person in this
family. The associated attributes areName, Gender, andAge. Some attribute values of an element
may be unknown. The relation of two persons is denoted by the link connecting them.

Example 3.3.2 Figure 3.2 shows a representation of the text fragment “TIME : 3 : 30 pm – 6” as

an instance in the text domain. In this domain, there are two types of objects: e.g.,w1, w2, · · · , w8

are words, andph1 is a phrase. The attributes of each word include itsspellingandpart-of-speech,

while the attributes of a phrase are itslengthand label. The positional relationsbeforeandafter

are used to connect two consecutive words. Relationsfirst and last indicate the first word and last

word of a phrase respectively. Note that there can be different ways to represent text. For example,

when the parsing information is available, the instance that describes a sentence may be a tree.

3.3.2 Relational Language

We define the relational languageR as a restricted (function free) first order language for rep-

resenting knowledge with respect to a domainD. The restrictions onR are applied by limiting

the formulae allowed in the language to those that can be evaluated very efficiently on given in-

stances (Definition 3.3.2). This is done by (1) defining primitive formulae with a limited scope of

quantifiers (Definition 3.3.3), and (2) defining general formulae inductively, in terms of primitive

formulae, in a restricted way that depends on the relational structures in the domain (Section 3.3.3).
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w1

Spelling TIME

POS nnp

w2

before

after

Spelling :

POS :

w3

before

after

Spelling 3

POS cd

w4

Spelling :

POS :

w5

before

after

Spelling 30

POS cd

w6

before

after

Spelling pm

POS nn

before

after

ph1
Label stime

Length 4

lastfirst

w7

Spelling -

POS :

w8

before

after

before

after

Spelling 6

POS cd

Figure 3.2: An instance in the text domain: there are two types of elements –wordsandphrases.
Wordsw1, · · · , w8 are connected by their positional relations,beforeandafter. Each word has
attributesspellingandpart-of-speech. Phraseph1 has links pointing to its first and last word, and
is associated with its label and length.

The emphasis is on locality with respect to the relational structures that are represented as graphs.

We omit many of the standard FOL definitions and concentrate on the unique characteristics

of R (see, e.g., (Lloyd, 1987) for details). The vocabulary inR consists of constants, variables,

predicate symbols, quantifiers, and connectives. Constants and predicate symbols vary for different

domains. In particular, for each constant inR, there is an assignment of an element inV. For each

k-ary predicate inR, there is an assignment of a mapping fromVk to {0,1} ({true, false}). We

present the main constructs of the language by first defining primitive formulae.

Definition 3.3.3 A primitive formula is defined inductively:

1. A term is either a variable or a constant.

2. Let p be a k-ary predicate with termst1, · · · , tk. Thenp(t1, · · · , tk) is an atomic formula.

3. Let F be an atomic formula, z a free variable in F. Then(∀zF ) and (∃zF ) are atomic

formulae.

4. An atomic formula is a primitive formula.

5. If F and G are primitive formulae, then so are(¬F ), (F ∧G), (F ∨G).

Notice that for primitive formulae inR, thescopeof a quantifier is always the unique predicate

that occurs within the atomic formula. We call a variable-free atomic formula apropositionand
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a quantified atomic formula, aquantified proposition(Khardon, Roth, & Valiant, 1999). The

informal semantics of the quantifiers and connectives is the same as usual.

Definition 3.3.4 (Formula) Let f : {0, 1}n → {0, 1} be a Boolean function ofn variables, and

let F1, F2, . . . Fn be primitive formulae inR. A clauseis a formula of the formf(F1, F2, . . . , Fn).

This can be used, in particular, to define disjunctive, conjunctive and implication clauses.

Given an instancex, a formulaF in R outputs a unique truth value,the value ofF on x.

It is defined inductively using the truth values of the predicates inF and the semantics of the

connectives. Notice that ifF has the form∃d1, . . . dkp(d1, . . . dk), for somek-ary predicatep,

then its truth value istrue if and only if there existsd1, . . . dk ∈ x, p(d1, . . . dk) has truth value

true. Similarly, if F has the form∀d1, . . . dkp(d1, . . . dk), for somek-ary predicatep, then its

truth value istrue if and only if for all d1, . . . dk ∈ x such thatp(d1, . . . dk) has truth valuetrue.

Since for primitive formulae inR the scope of a quantifier is always the unique predicate in the

corresponding atomic formula, the following properties trivially hold. It will be clear that the way

we extend the language (Section 3.3.3) maintains these properties.

Proposition 3.3.1 Let F be a formula inR, x an instance, and lettp be the time to evaluate the

truth value of an atomp in F . Then, the value ofF onx can be evaluated in time
∑

p∈F tp.

That is,F is evaluated simply by evaluating each of its atoms (ground or quantified) separately.

This holds, similarly, for the following version of subsumption for formulae inR.

Proposition 3.3.2 (subsumption)Letx be an instance and letf : {0, 1}n → {0, 1} be a Boolean

function ofn variables that can be evaluated in timetf . Then the value of the clausef(F1, . . . Fn)

onx can be evaluated in timetf +
∑

F tF , where the sum is over alln formulae that are arguments

of f .
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3.3.3 Relation Generation Functions

So far we have defined only primitive formulae and minimized the interaction between variables. In

order to generate more expressive formulae that respect the graphical structure in a given instance,

we definerelation generation functionsin this section, which allows the formulae generated to be

evaluated efficiently.

Definition 3.3.5 A formula inR maps an instancex to its truth value. It isactive in x if it has

truth valuetruein it. We denote byX the set of all instances, theinstance space. A formulaF ∈ R

is thus arelational featureoverX, F : X → {0, 1}.

Example 3.3.3 Let instancex be the text fragment illustrated in Example 3.3.2. Some active for-

mulae inx areword(TIME),word(pm), andnumber(30). On the contrary, infinitely more formulae,

such asword(am), are not active.

Given an instance, we would like to know what formulae (relational features) areactivein it.

In addition, this should be done without the need to write down explicitly all possible formulae in

the domain. This is important over infinite domains or in problem domains such as NLP, where

inactive formulae vastly outnumber active formulae. Therefore, only active formulae are noticed

and recorded. As will be clear later, this notion will also allow us to significantly extend the

language of formulae by exploiting properties of the domain.

Definition 3.3.6 Let X be an enumerable collection of formulae onX. A relation generation

function (RGF) is a mappingG : X → 2X that mapsx ∈ X to a set of all elementsχ in X that

satisfyχ(x) = 1. If there is noχ ∈ X for whichχ(x) = 1, G(x) = φ.

RGFs can be thought of as a way to define “types” of formulae, or to parameterize over a

large space of formulae. Only when an instancex is present, a concrete formula (or a collection of

formulae) is generated. An RGF can be thought of as having its own rangeX of relational features.
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Example 3.3.4 It is impossible to list all formulae that use thenumberpredicate in advance. How-

ever, an RGF can specify formulae of this kind. Given the instance “TIME : 3 : 30 pm ”,

only the active relations of this kind:number(3)andnumber(30)and, potentially,∃x number(x)

are generated.

In order to define the collection of formulae inR, we define the family of RGFs forR; the

output of these defines the formulae inR. RGFs are defined inductively using a relational calculus.

The alphabet of this calculus consists of (1) basic RGFs, calledsensors, and (2) a set of connectives.

While the connectives are the same for every alphabet, thesensorsvary from domain to domain.

The use of sensors is a way to encode basic information one can extract from an instance. It can

also be used as a uniform way to incorporate external knowledge sources that aid in extracting

information from an instance.

Definition 3.3.7 A sensoris a relation generation function that maps an instancex into a set of

atomic formulae inR. When evaluated on an instancex, a sensors outputs all atomic formulae

in its range which areactive.

Example 3.3.5 Following are some sensors that are commonly used in NLP.

• Thewordsensor over word elements, which outputs the active relationsword(TIME), word(:),

word(3), word(30), andword(pm)from “TIME : 3 : 30 pm”.

• Thevowel sensor over word elements, which outputsvowel(word)or ∃x vowel(x) when the

word it operates on begins with a vowel.

• Thelengthsensor over phrase elements, which outputs the active relationlength(4)from “3

: 30 pm”.

• Theis-asensor, which outputs the semantic class of a word.

• Thetagsensor, which outputs the part-of-speech tag of a word
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Theword and lengthsensors derive information directly from the raw data, while theis-asensor

uses external information sources, such as WordNet, and thetagsensor uses a pre-learned part-

of-speech tagger.

One of the key cited advantages of ILP methods is the ability to incorporate background knowl-

edge. In our framework, this is incorporated flexibly using the notion ofsensors. Sensors allow us

to treat information that is readily available in the input, external information, or even previously

learned concepts, in a uniform way.

Several mechanisms can be used in the relational calculus to restrain the scope of RGFs’ op-

erations. We define here thefocusmechanism, which specifies a subset of elements in an instance

on which an RGF can be applied.

Definition 3.3.8 Let E be a set of elements in a given instancex. An RGFr is focusedon E if it

generates only formulae in its range that are active inx due to elements inE. The focused RGF is

denoted byr[E].

There are several ways to define a focus set. It can be specified explicitly or described indirectly

by using the structure information (i.e., the links) in the instance. For example, when the problem

is to predict the label of each element in a text fragment (e.g., part-of-speech tagging), focus may

be defined relative to the target element. When the goal is to predict some property of the whole

instance (e.g., to distinguish the mutagenicity of a compound), the focus can simply be the whole

instance.

The relational calculus allows one to inductively generate new RGFs by applying connectives

and quantifiers over existing RGFs. Using the standard connectives one can define RGFs that

output formulae of the type defined in Definition 3.3.3 (see (Cumby & Roth, 2000) for details).

We now augment the relational calculus by adding structural operations, which exploit the

structural (relational) properties of a domain as expressed by the links. RGFs defined by these

structural operations can generate more general formulae that have more interactions between vari-

ables but still allow for efficient evaluation and subsumption, due to the graph structure.
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We define two structural collocation operators that make use of the chain structure in a graph

as follows.

Definition 3.3.9 (collocation) Let s1, s2, . . . sk be RGFs forR, g a chain-structured subgraph in

a given domainD = (V , E). collocg(s1, s2, . . . sk) is a restricted conjunctive operator that is

evaluated on a chain of lengthk in g. Specifically, letv1, v2, . . . vk ∈ V be a chain ing. The

formulae generated bycollocg(s1, s2, . . . sk) are those generated bys1[v1]&s2[v2]& . . . &sk[vk],

where

1. bysj[vj] we mean here the RGFsj is focused to{vj}, and

2. the& operator means that formulae in the output of(s&r) are active formulae of the form

F∧G, whereF is in the range ofs andG is in the range ofr. This is needed since each RGF

in the conjunction may produce more than one formula.

The labels of links can be chosen to be part of the generated features if the user thinks the infor-

mation could facilitate learning.

Example 3.3.6 When applied with respect to the graphg which represents the linear structure of

a sentence,collocg generates formulae that correspond to n-grams. For example, given the frag-

ment “Dr John Smith”, RGFcolloc(word, word)extracts the bigramsword(Dr)-word(John)

andword(John)-word(Smith) . When the labels on the links are shown, the features become

word(Dr)-before-word(John) andword(John)-before-word(Smith) . If the lin-

guistic structure is given instead, features likeword(John)-SubjectOf-word(builds)

may be generated. See (Even-Zohar & Roth, 2000) for more examples.

Similarly to collocg, one can define asparsecollocation as follows:

Definition 3.3.10 (sparse collocation)Let s1, s2, . . . sk be RGFs forR, g a chain structured sub-

graph in a given domainD = (V , E). scollocg(s1, s2, . . . sk) is a restricted conjunctive operator

that is evaluated on a chain of lengthn in g. Specifically, letv1, v2, . . . vn ∈ V be a chain ing. For
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each subsetvi1 , vi2 , . . . vik , whereij < il whenj < l, all the formulae:s1[vi1 ]&s2[vi2 ]& . . . &sk[vik ],

are generated.

Example 3.3.7 Given the fragment “Dr John Smith”, the features generated by the RGF scol-

loc(word,word) areword(Dr) –word(John) , word(Dr) –word(Smith) , andword(John)

–word(Smith) .

Notice that while primitive formulae inR have a single predicate in the scope of each quanti-

fier, the structural properties provide a way to go beyond that, but only in a restricted way that is

efficiently evaluated. Structural operations allow us to define RGFs that constrain formulae evalu-

ated on different objects without incurring the cost usually associated with enlarging the scope of

free variables. This is done by enlarging the scope only as required by the structure of the instance.

It also allows for efficient evaluation, as in Proposition 3.3.1, 3.3.2, with the only additional cost

of finding a chain in the graph.

3.3.4 Application Examples

Our propositionalization method has been applied to several classical ILP tasks (Cumby & Roth,

2002), where SNoW is used as the propositional learner. In order to provide a more complete

exposition of the framework, we summarize the experiments oflearning kinship relationsand

predicting mutagenicityhere.

Learning Kinship Relations

The problem of learning the definitions of kinship relations has been a typical task for ILP ap-

proaches since late 80’s (Hinton, 1986; Quinlan, 1990). The benchmark consists of 112 positive

relations over two separate families, and the goal is to learn the relation of any two people.

The data set is first mapped to the graphical representation presented in Section 3.3.1, where

a person is represented by a node, and the relation between two persons is depicted by a link.

Given two nodesS andT , the target instance is the sub-graph of these two nodes and all the links
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and nodes in the paths fromS to T . Relational features are generated along the paths between

them. In particular,colloc of size 2 and 3 along each path are used. Since the only attribute,

name, of each element is not important to learning the definition of a relation, only the labels of

the links are kept as features. For example, a relational feature might be –brother –mother –,

or –husband –sister –father –. Note that if important attributes of nodes (e.g.,gender) are

present, they can also be extracted by sensors as features.

The experimental result shows the feasibility and efficiency of our framework. After two cycles

of training on 101 examples, the accuracy converges to 99.36%. As a comparison, FOIL (Quinlan,

1990) takes 500 sweeps and FORTE (Richards & Mooney, 1992) trains on over 300 examples to

achieve the same level of accuracy.

Mutagenesis

Mutagenicity prediction has become a standard benchmark problem for propositionalization meth-

ods in ILP (Srinivasan, Muggleton, King, & Sternberg, 1996). In this task, the goal is to dis-

tinguish compounds with positive log mutagenicity (labeled as “active”) from those having zero

or negative log mutagenicity (labeled as “inactive”). For each compound, the internal structure

is represented as a set of Prolog facts in tuples. Specifically,bond(compound, atom1,

atom2, bond-type) describes the bonds connecting atoms, andatm(compound, atom,

element, atom-type, charge) denotes the elements of an atom. Global information about

a compound, such as its mutagenicity, logP, and lumo values, is also provided.

To apply our framework, each compound is mapped to a graph, where each node represents

an atom. The attributes of an atom include the atom types, element types, and partial charges.

Edges between atoms corresponds to the bonds, labeled with bond-types. In addition, there is one

special node that represents the whole compound with the global information stored as attributes.

Figure 3.3 shows an example of this graphical representation.

The features generated for each example include the global information of the compound, and

colloc of size 9 in paths between two atoms. The relational features consist of the attributes of
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Figure 3.3: The graphical representation of a mutagenesis domain (taken and revised from (Cumby
& Roth, 2003)): each domain has onecompoundelement that has relationscontainspointing to
eachatom; atomshavebondrelations among them; each element has its own attributes.

the nodes extracted by predefined sensors and the bond-types labeled on the edges as well.

The system based on our framework achieves an accuracy of 88.6%, which is comparable to the

results achieved in (Srinivasan, Muggleton, King, & Sternberg, 1996) using the Progol (Muggleton,

1992) system, and a little below the best results on this data set (Sebag & Rouveirol, 1997), which

made use of richer features.

3.4 Discussion

In this chapter, we suggest a new propositionalization approach for relational learning, which al-

lows for the representation and learning of relational information using propositional means. The

method presented here is flexible and allows the use of any propositional algorithm within it, in-

cluding probabilistic approaches. Consequently, this method can be used on a variety of relational

learning problems, and plays the role of feature extractor in all the NLP applications in this dis-

sertation. Below we discuss some subtle issues in the comparison between our method and other
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propositionalization methods or traditional ILP approaches.

The fundamental difference between the traditional ILP approach, including most earlier propo-

sitionalization schemes, and the propositionalization approach proposed here, is their different be-

haviors with respect to generating “features”. Previously, “features” were generated as part of the

search procedure in an attempt to find good bindings. Ideally, a generic ILP algorithm may de-

termine good features itself without much guidance from users and output the learned concept in

FOL. In a propositionalization approach like ours, the process of feature extraction is decoupled

from the learning stage. “Types” of features are proposed by the system designer, via the RGFs

mechanism; then, features are generated based on these in a data driven way, once data is observed.

The level of abstraction is also determined when designing the RGFs: some of these relational fea-

tures are grounded and some have free variables in them. With the help of RGFs defined in our

language, users can easily define the “types” of relational features that might be important to learn-

ing. Learning is done only after the features are extracted, namely when the data is re-represented

via a feature-based representation. When propositional learning algorithms like SNoW or naive

Bayes are used, appropriate weights are learned for the features “in parallel”, which makes the

learning process more efficient.

A nice property of ILP is the better comprehensibility of the FOL rules it learns. This is some-

what preserved in earlier propositionalization approaches, such as when learning algorithms like

decision trees are used. In our case, when using linear threshold functions as the hypothesis space,

we may lose some of it for the benefit of gaining expressivity – we represent “generalized rules”,

a linear threshold function, rather than the special case of conjunctive rules. A linear threshold

function such as1(w1x1 + w2x2 + wnxn ≥ θ), where1(·) is the indicator function, can represent

concepts likeconjunctions, disjunctionsor at leastm out ofn, etc. For example,y = x1 ∨ x3 ∨ x5

can be represented byy = 1(x1 + x3 + x5 ≥ 1), andy = at least 2 of{x1, x3, x5} can be repre-

sented asy = 1(x1 + x3 + x5 ≥ 2).

When learned over an expressive feature space like the one generated by our methods, a feature-

efficient algorithm that learns a linear threshold function represents, in fact, a low degree DNF or
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CNF over the original feature space. Advocates of ILP methods suggest that the rich expres-

sive power of FOL provides advantages for knowledge-intensive problems such as NLP (Mooney,

1997). However, given strong intractability results, practical systems pose many representational

restrictions. In particular, the depth of the clauses (the number of predicates in each clause) is

severely restricted. Thus, the learned concept is actually ak-DNF, for smallk. In our framework,

the constructs ofcolloc andscolloc allow us to generate relational features which are conjunctions

of predicates and are thus similar to a clause in the output representation of an ILP program. While

a logic program represents a disjunction over these, a linear threshold function over these relational

features is more expressive. In this way, it may allow learning smaller programs. The following

example illustrates the representational issues:

Example 3.4.1 Assume that in several seminar announcements, fragments that representspeaker

have the pattern:

· · · Speaker : Dr FName LNameline-feed· · ·

An ILP rule for extractingspeaker could then be:

speaker (target)← before targ (2, “Speaker”) ∧

contains (target, “Dr”) ∧

after targ (1, line-feed)

That is, the second word before the target phrase is “Speaker”, target phrase contains word “Dr,”

and the “line-feed” character is right after the target phrase. In our relational feature space, all

the elements of this rule (and many others) would be features, but the above conjunction is also a

feature. Therefore, a collection of clauses of this form becomes a disjunction in our feature space

and will be learned efficiently using a linear threshold element.
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Chapter 4

Extracting Entities

We first apply our learning framework proposed in Chapter 3 to a basic information extraction (IE)

task. As introduced in Chapter 1, IE is a text processing task that attempts to extract items with

specific semantic or functional meaning from unrestricted and unstructured text. In this chapter, we

focus on extracting specifically defined entities from different sets of similar documents. Examples

of this task include identifying speaker names in a seminar announcement and locating the title of

a job posting. Several relational learning based methods have been proposed for this shallow text

processing problem (e.g., Califf & Mooney, 1999; Freitag & McCallum, 2000; Craven & Slattery,

2001), making this an interesting task to evaluate our learning framework on.

4.1 Overview

Information extraction (IE) is a natural language processing (NLP) task that processes text and

attempts to extract items with specific semantic or functional meaning from unrestricted and un-

structured text. For example, in the domain of terrorism, the information extraction system might

extract names of perpetrators, locations of attacks, times of attacks etc. (DARPA, 1995). In this

chapter, the IE task is defined as locating specific fragments of an article according to predefined

slots in a template. Each article is a plain-text document that consists of a sequence of tokens. This

form of shallow text processing has attracted considerable attention recently with the growing need

to intelligently process the huge amount of information available in the form of text documents.
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While learning methods have been used earlier to aid in parts of an IE system (Riloff, 1993;

Soderland & Lehnert, 1994), it has been argued quite convincingly (Califf & Mooney, 1999;

Craven & Slattery, 2001) that relational methods are appropriate in learning how to directly ex-

tract the desired items from documents. Indeed, previous works (Califf & Mooney, 1999; Freitag,

2000) have demonstrated the success of ILP methods in this domain. Therefore, it is an interesting

task to which our relational learning framework proposed in Chapter 3 can be applied.

We note that in addition to these systems, which view IE as a relational problem, several works

have appliedword based classifiers for the purpose of identifying phrases; most of these systems,

though, still use fairly sophisticated relational features, without making this stage in the process

explicit. Examples include (Freitag & McCallum, 2000), who apply hidden Markov models to

predict each slot and (Chieu & Ng, 2002), who use Maximum Entropy classifier to predict whether

a word is inside or outside a slot, and then combine these predictions to extract the target phrases.

The rest of this chapter is organized as follows. We first describe our information extraction

systems, including the data and templates, target representation, feature generation, and the system

architecture in Section 4.2. The experimental results are summarized in Section 4.3, and some

interesting issues are discussed in Section 4.4.

4.2 Task Description and System Design

4.2.1 Data and Templates

Under the same framework, we build two IE systems for different sets of documents –seminar

announcementsandcomputer-related job postings. The data and some target slots in the templates

are described here.
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Seminar Announcements

The first data set consists of485 CMU seminar announcements1. The goal here is to extract four

types of fragments from each announcement – those describing the start time (stime ) and end

time (etime ) of the seminar, its location (location ) and the seminar’s speaker (speaker ).

Note that an article might not contain one of the fields, e.g.,etime , or might contain one of them,

e.g.,speaker , more than once.

Given an article, our system picks at most one fragment for each slot. Following the same

evaluation method used in (Freitag, 2000), if the chosen fragment represents the slot, we consider

it as a correct prediction. Otherwise, it is a wrong prediction (including the case that the article

does not contain the slot at all).

Computer-related Job Postings

The second data set is a set of 300 computer-related job postings from the University of Texas at

Austin2. In this case, 17 types of fragments that describe the job position are extracted from each

article. Some of the fields, such astitle , company , salary , take single values (each could be

a phrase). When a document contains several fragments for a single-valued slot, these fragments

will have the same value. Therefore, given a job posting, our system picks at most one fragment

for each of these slots. Other fields such aslanguage (programming language skills required)

or platform (platforms used in this computer related job) may take multiple values. For these

fields, our system may pick several different fragments for the same slot.

4.2.2 Extracting Relational Features

The basic strategy of our IE solution is to learn a classifier that labels text fragments. To model this

problem as a supervised learning problem we first generate examples for each type of fragment.

1The data set was originally collected from newsgroups and annotated by Dayne Freitag; it is available at (RISE,
1998).

2The data set was originally collected from newsgroups and annotated by Mary Califf; it is also available at (RISE,
1998).
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· · · the talk given by: Dr FName LName line-feedTopic : A novel· · ·

Figure 4.1: Three regions for feature extraction

This is done by:

1. Identifying candidate fragments in the document. Suppose a document consists of tokenst1,

t2, · · · , tn, indexed by their positions in the document. Any string of consecutive tokensti,

ti+1, · · · , tj, where1 ≤ i ≤ j ≤ n, constitutes a candidate fragment. In practice, we limit

the size of these fragments to a constantl (i.e. j − i ≤ l). Note that fragments may overlap,

and only a small number of them are meaningful fragments.

2. For each candidate fragment, re-represent it as an example which consists of all active fea-

tures extracted for this fragment using predefined RGFs.

Let f = (ti, ti+1, · · · , tj) be a fragment. Our RGFs are defined to extract features from three

regions: left window (ti−w, · · · , ti−1), target fragment(ti, · · · , tj), and right window (tj+1, · · · ,

tj+w), wherew is the window size. Figure 4.1 demonstrates one example, in which the three

framed boxes represent left window, target region, and right window (w = 4) respectively.

For each fragment, an instance is formed by these three regions. There are two types of ele-

ments – word elements (e.g.,ti−w, · · · , tj+w) and one phrase element (the target region) inside the

instance. The graphical representation is the same as shown in Figure 3.2. The RGFs are focused

either on a specific word element or the phrase element and define relational features relative to

these. Examples of RGFs used in the experiments are shown in Section 4.2.4 and Figure 4.3.

4.2.3 Applying Propositional Learning Algorithms

Given RGFs and an instance as described above, an example is a list of the formulae that are active

in this instance. Once examples have been generated, we can apply any propositional learning algo-

rithm to learn on them. In addition to the Winnow variation within the SNoW learning architecture,

we also tested the naive Bayes algorithm (also implemented within the SNoW architecture).
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One potential computational difficulty of any propositionalization approach is that it gener-

ates a huge number of features, and most of them occur very few times in examples. Eliminating

some infrequent features speeds up the learning process, but may somewhat sacrifice the perfor-

mance (Golding & Roth, 1999; Carlson, Rosen, & Roth, 2001). To test its effect, we conducted

a series of experiments that eliminate different portions of features according to the occurrence

frequency.

Another potential computational difficulty comes from the essence of IE tasks. Since any doc-

ument fragment may be of potential interest as the field for some slot, a large number of examples

need to be generated in order to represent all possible fragments in a document. Among them,

negative examples (irrelevant fragments) vastly outnumber positive examples (fragments that rep-

resent legitimate slots). In the seminar announcements data set, for example, the average length of

an article is200 words. If we limit the maximum length of fragments to 14 words, then each arti-

cle would generate about3300 candidate fragments, out of which about10 fragments (i.e.0.3%)

represent legitimate slots. To handle this, we consider several methods to eliminate many of the

negative training examples3. This reduces the learning time, but may have an adverse impact on

performance. To test this we compare several methods, including randomly selecting a subset of

the negative examples and using only positive examples. Our main approach to address this issue

is described next.

4.2.4 Two-stage Architecture

In order to efficiently eliminate negative examples without degrading accuracy, we propose a two-

stage learning framework for the IE task. The same classifier, SNoW, is used in both stages, but in

slightly different ways.

SNoW is typically used as apredictor, when it uses a winner-takes-all mechanism over the

activation values of the target classes. Here we suggest to rely directly on the activation value it

3 Note that since we consider therecognitionof fragments of interest and theirclassificationsat the same time,
an approach that only uses positive examples (i.e., only fragments of interest) will significantly degrade recognition
performance.
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Figure 4.2: The two-stage architecture for seminar announcements data

outputs, computed using a sigmoid function over the linear sum. The normalized activation value

increases with the confidence in the prediction and can thus be used as a density function. The

success of our two-stage architecture relies heavily on the robustness of this measure. The two

stages are:

1. Filtering: reducing the number of candidate fragments to a small number by removing frag-

ments that are very likely to be irrelevant, and

2. Classification: identifying the correct fragment from the remaining fragments and classify-

ing it into one of the target classes.

Figure 4.2 illustrates how this architecture is applied to the seminar announcements data. All

the candidate fragments are sent to four filters, one for each slot type. Four corresponding binary

classifiers are then used respectively to determine if the remaining fragments they see in their input

belong to the appropriate slots.

Intuitively, this architecture increases the expressivity of our classification system. Moreover,
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given the relatively small number of positive examples and the existence of the simply learned,

robust learner that eliminates most of the negative examples, a large number of irrelevant features

is also eliminated, which is an important issue given the small data set.

Filtering

This stage attempts to filter out most of the negative examples while eliminating as few positive

examples as possible. It can also be viewed as a classifier designed to achieve high recall, while the

classifier in the second stage aims at high precision. The filter consists of two learned classifiers; a

fragment is filtered out if it meets one of the following criteria:

1. Single feature classifier: the fragment does not contain an active feature that should be ac-

tive on positive examples. This information can be derived from simple statistics from the

training data or specified by human experts.

2. General Classifier: the fragment’s confidence value is below the threshold.

For criterion 1, it turns out that there exist some features that are (almost) always active on pos-

itive examples. For example, in our experiments, thelength of fragmentssatisfies this criterion.

len(fragment) < 7 always holds instime fragments in seminar announcements. Similarly, the

title fragment in job postings must contain a word that is a noun.

For criterion 2, implemented using SNoW, relying on its robust confidence estimation, the

problem becomes finding the right threshold. The activation value of SNoW, converted via a sig-

moid function, is used to measure how likely a fragment is to represent a specific slot. Thresholds

for the different types of slots are set to be slightly higher than the minimum activation values of

the positive examples in the training data. Examples with low activation values are filtered out.

The two stages also differ in the RGFs used. Only the following crude RGFs are used in the

filtering stage:

• Target region: word, tag, word&tag, colloc(word, word), colloc(word, tag), colloc(tag,

word), colloc(tag, tag)on word elements, andlenon the phrase element.
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Figure 4.3: Graphical Illustration of a set of RGFs

• Left & Right window: word&loc, tag&loc, andword&tag&loc, whereloc extracts the posi-

tion of the word in the window.

The use of these RGFs to extract features that represent a fragment is demonstrated in Figure 4.3.

Classification

Fragments that pass the filtering stage are then classified using a second SNoW classifier for each

slot. First, an additional collection of RGFs is applied to enhance the representation of the can-

didate fragments, and thus allow for more accurate classification. In training, the remaining

fragments (which are annotated) are used as positive or negative examples to train the classifiers as

in the previous stage. In testing, the remaining fragments are evaluated on the learned classifiers

to determine if they can fill one of the desired slots.

The RGFs added for theseminar announcementsdata include:

1. For stime andetime :

conjunct[word&loc[-1,-1], word&loc[1,4]],
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conjunct[word&loc[-1,-1], tag&loc[1,4]]

2. For location andspeaker :

conjunct[word&loc[-2,-1], tag[0,0], tag&loc[1,1]]

In the above RGFs, numbers in the brackets represent the range of the windows. For example,

[-1,-1] indicates the element immediately before the target region, [0,0] is the target region, and

[1,4] means the first to the fourth elements immediately after the target region. Therefore, the first

set of RGFs is a sparse structural conjunction of the word immediately before the target region,

and of words and POS tags in the right window (with relative positions). The second is a sparse

structural conjunction of the last two words in the left window, a POS tag in the target, and the first

tag in the right window.

The RGFs added for thejob postingsdata include:

1. For title :

phAllCap[0,0], phAllNotNum[0,0], phAllWord[0,0]

conjunct[word&loc[-2,-1], tag&loc[1,1]]

conjunct[tag&loc[-2,-1], tag&loc[1,1]]

2. For recruiter , req yrs exp :

conjunct[word&[-1,-1], word&loc[1,1]]

conjunct[word&[-1,-1], tag&loc[1,1]]

3. For salary , state , city , language , platform , application , des yrs exp ,

req degree , des degree , area :

phAllCap[0,0], phAllNotNum[0,0], phAllWord[0,0]

conjunct[word&loc[-2,-1]; colloc(word,word,word)[0,0]; tag&loc[1,1]]

conjunct[word&loc[-2,-1]; colloc(word,word)[0,0]; tag&loc[1,1]]
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conjunct[word&loc[-2,-1]; word[0,0]; tag&loc[1,1]]

Among these RGFs, phAllCap[0,0], phAllNotNum[0,0] and phAllWord[0,0] check if the words

in the target region are all capitalized, without numbers, or all alphabetical (without numbers and

symbols), respectively. In addition, colloc(word,word,word)[0,0] extracts all the trigrams in the

target region, and colloc(word,word)[0,0] extracts the bigrams.

A fragment may be considered by several classifiers; it is classified as typet if the t-th classifier

decides so. For single-value slots, at most one fragment of typet is chosen in each article based on

the activation value of the corresponding classifier.

A good way to view our two-stage architecture is as a multi-class classifier that runs the se-

quential model (Even-Zohar & Roth, 2001). The first stage (i.e., filtering) outputs a smaller set of

classes that need to be considered. Given a candidate phrase, the second stage (i.e., classification)

just predicts it as one of the classes in the subset.

4.3 Experimental Results

Our framework has been tested on two data sets,seminar announcementsandcomputer-related job

postings, which were used previously to test several ILP-based IE systems (e.g. RAPIER (Califf,

1998; Califf & Mooney, 1999; Califf & Mooney, 2003), SRV (Freitag, 2000), and WHISK (Soder-

land, 1999)). We compare our results to theirs in Section 4.3.1. We also report the experimental

results on the effects of pruning features and examples in Section 4.3.2.

4.3.1 Comparison to Other Systems

Our experiments use the same data, test methodology and evaluation metrics used by several ILP-

based IE systems in previous works. As usual, the performance is quantified in terms ofprecision

(the percentage of correct predictions),recall (the percentage ofslots that are identified), and

F1 (the harmonic mean of precision and recall). We estimate the95% confidence intervals of
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System 2-SNoW-IE 1-SNoW-IE 1-NB-IE
Prec Rec F1 Prec Rec F1 Prec Rec F1

stime 99.8 99.8 99.8± 0.2 98.2 97.4 97.8± 0.8 97.9 97.9 97.9± 0.8
etime 98.4 95.4 96.9± 1.2 92.3 91.2 91.7± 2.1 81.1 91.8 86.1± 2.4

location 89.9 63.9 74.7± 2.3 83.7 58.9 62.9± 2.6 40.3 34.7 37.3± 2.8
speaker 82.4 63.0 71.4± 2.6 72.6 61.1 66.4± 2.9 17.4 14.4 15.7± 2.4

System RAPIER-WT RAPIER SRV WHISK

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

stime 96.5 95.3 95.9 93.9 92.9 93.4 98.6 98.4 98.5 86.2 100.0 92.6
etime 94.9 94.4 94.6 95.8 94.6 95.2 67.3 92.6 77.9 85.0 87.2 86.1

location 91.0 61.5 73.4 91.0 60.5 72.7 74.5 70.1 72.2 83.6 55.4 66.6
speaker 79.0 40.0 53.1 80.9 39.4 53.0 54.4 58.4 56.3 52.6 11.1 18.3

Table 4.1: Results forseminar announcements

theF1 values using bootstrap re-sampling (Noreen, 1989). To do this, we repeatedly sample the

documents for each test set, with replacement, to generate new test data. The distribution ofF1 in

this data is then used as the distribution of the performance of each learned system.

In addition to the results of our main system, 2-SNoW-IE (2-stage architecture SNoW Learn-

ing), we also present the results of our other two systems, 1-SNoW-IE and 1-NB-IE, as comparison.

1-SNoW-IE learns the classifier based only on examples generated for the first stage. This provides

some idea on how much the overall performance benefits from the two-stage architecture. In ad-

dition to the SNoW learner, we have also experimented with a second propositional algorithm, the

naive Bayes (1-NB-IE) algorithm. NB was used on exactly the same set of features (same exam-

ples) that were generated using our propositionalization framework for 1-SNoW-IE, and in exactly

the same way. We discuss the experiments in more details below.

Seminar Announcements

In the experiment ofseminar announcements, the data (485 documents) is randomly split into two

sets of equal size, one for training and the other for testing. The reported results (Table 4.1) are an

average of five runs. Along with the results are several other ILP-based IE systems that were tested

on this task under the same conditions. An exception is WHISK, for which the results are from a

10-fold cross validation using only100 documents randomly selected from the training set.

The systems do not differ only in the algorithms but also in the way they represent the domain
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Relational Features Predicate Logic Translation

w[Ltd]-w[.] ∃x, y Tr(x) ∧ Tr(y) ∧Before(x, y) ∧Word(x,“Ltd” ) ∧Word(y, “.”)

w[*LCS]&t[*NNP] ∃x Tr(x) ∧ LocInTr(x, 1) ∧Word(x,“LCS”) ∧ Tag(x,“NNP”)

w[* Staffing]&t[* NNP] ∃x Tr(x) ∧ LocInTr(x, 2) ∧Word(x,“Staffing”) ∧ Tag(x,“NNP”)

w[LCS]&t[NNP] ∃x Tr(x) ∧Word(x,“LCS”) ∧ Tag(x,“NNP”)

w[Global]-w[Staffing] ∃x, y Tr(x) ∧ Tr(y) ∧Before(x, y) ∧Word(x,“Global”) ∧Word(y,“Staffing”)

w[* Austin] ∃x Tr(x) ∧ LocInTr(x, 2) ∧Word(x,“Austin”)

w[:*]–t[* NNPS] ∃x, y BeforeTr(x, 1) ∧Word(x, “ : ”) ∧ Tr(y) ∧ LocInTr(y, 2) ∧ Tag(y,“NNPS”)

w[at*]–w[*.] ∃x, y BeforeTr(x, 1) ∧Word(x,“at”) ∧ Tr(y) ∧ LocInTr(y, 1) ∧Word(y, “.”)

w[:*]–w[* Services] ∃x, y BeforeTr(x, 1) ∧Word(x,“:” ) ∧ Tr(y) ∧ LocInTr(y, 2) ∧Word(y, “Services”)

phLen[4] TrLen(4)

Table 4.2: Some dominant features for slotrecruiter in computer-related job posting data

and generate examples (i.e., their features). The words in the documents are used by all systems.

Part-of-speech tags are used both in RAPIER-WT and our systems; SRV uses other predicates

that capture the POS information to some extent. The full version of RAPIER also uses semantic

information; this can be done in our system by adding, say, anis-a sensor, but given their results,

we did not incorporate this information.

Overall, 2-SNoW-IE outperforms the existing rule-based IE systems on all the four slots. To

clarify, we note that the output representation of our system makes use of similar types of relational

features as do the ILP-based systems, only that instead of a collection of conjunctive rules over

these, it is represented as a linear function.

Tables 4.2 and 4.3 list some of the dominant features used by our predictors. The left column

describes the features in the feature extraction language we use, and the right column describes

them using standard FOL predicates. Notice that the global quantifiers are used only to describe

the chain structure in the original graphical representation, and can be evaluated efficiently as

stated in Section 3.3.3. When the chain structural information is present, only local quantifiers

within each focused region are allowed.

The intended meaning of the predicates used is as follows:

• Tr : in the target region

• Before: one word is right before the other
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Relational Features Predicate Logic Translation

w[.*]–t[NNP]–t[*-LRB-] ∃x, y, z BeforeTr(x, 1) ∧Word(x, “.”) ∧ Tr(y) ∧ Tag(y,“NNP”)∧

AfterTr(z, 1) ∧ Tag(z,“-LRB-” )

t[NNP]-t[NNP] ∃x, y Tr(x) ∧ Tr(y) ∧Before(x, y) ∧ Tag(x,“NNP”) ∧ Tag(y,“NNP”)

t[BOL]-t[NNP] ∃x, y Tr(x) ∧ Tr(y) ∧Before(x, y) ∧ Tag(x,“BOL” ) ∧ Tag(y,“NNP”)

w[.*]–t[NNP]–t[*VBZ] ∃x, y, z BeforeTr(x, 1) ∧Word(x, “.”) ∧ Tr(y) ∧ Tag(y,“NNP”)∧

AfterTr(z, 1) ∧ Tag(z,“VBZ ”)

w[*Talk]&t[*NN] ∃x Tr(x) ∧ LocInTr(x, 1) ∧Word(x,“Talk” ) ∧ Tag(x,“NN” )

w[*Professor]&t[*BOL] ∃x Tr(x) ∧ LocInTr(x, 1) ∧Word(x,“Professor”) ∧ Tag(x,“BOL” )

w[.*]–t[NNP]-t[NNP]–t[*IN] ∃w, x, y, z BeforeTr(w, 1) ∧Word(w, “.”) ∧ Tr(x)∧

Tag(x, “NNP”) ∧ Tr(y) ∧ Tag(y,“NNP”)∧

Before(x, y) ∧AfterTr(z, 1) ∧ Tag(z,“IN” )

w[:*]–t[NNP]–t[*NN] ∃x, y, z BeforeTr(x, 1) ∧Word(x, “ : ”) ∧ Tr(y) ∧ Tag(y,“NNP”)∧

AfterTr(z, 1) ∧ Tag(z,“NN” )

w[:*]–t[NNP]-t[NNP]–t[*VBG] ∃w, x, y, z BeforeTr(w, 1) ∧Word(w, “ : ”) ∧ Tr(x)∧

Tag(x, “NNP”) ∧ Tr(y) ∧ Tag(y,“NNP”)∧

Before(x, y) ∧AfterTr(z, 1) ∧ Tag(z,“VBG” )

w[appointment*]–t[NNP]–t[*VBP] ∃x, y, z BeforeTr(x, 2) ∧Word(x,“appointment”) ∧ Tr(y)∧

Tag(y,“NNP”) ∧AfterTr(z, 1) ∧ Tag(z,“VBP” )

Table 4.3: Some dominant features for slotspeaker in seminar announcement data

• Word : spelling of the word

• Tag: part-of-speech tag of the word (The exception is “BOL”, which means the word is at

the beginning of the line.)

• LocInTr: the location in the target region

• BeforeTr: the location before the target region

• BeforeTr: the location after the target region

• TrLen: length of the target region

Tables 4.2 and 4.3 by no means represent the learned hypothesis, which makes use of a very

large number of features. The total number of features used in the first learning stage was 421,300

for theseminar announcementstask and 240,574 for thejob postingstasks. The total number of

features in the second stage varies from slot to slot. For the speaker slot the number was 245,081;

for the recruiter slot it was 143,104.
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% examples that are retained after filtering % positive examples lost
slot training testing training testing

stime 6.47% (45664/706270) 6.33% (43593/688535) 0.41% 1.27%
etime 2.04% (14414/706270) 2.06% (14194/688535) 0.00% 1.57%

location 9.28% (65555/706270) 9.17% (63117/688535) 0.87% 6.31%
speaker 12.68% (89550/706270)12.18% (83860/688535) 0.68% 11.78%

Table 4.4: Filtering efficiency onseminar announcementsdata

Table 4.1 also exhibits the enhancement in performance due to the two state architecture of the

SNoW-IE system. As a side note, the ability to use this architecture provides another indication

of the flexibility of this approach and the advantage of learning with propositional means. Table

4.4 gives some insight of the examples fed into the second classification stage by showing the

average performance of the filtering stage. The first two columns show the ratio of examples that

are retained after filtering in training and testing respectively. Generally, the number of examples

is reduced by 87.32% to 97.96%. The relatively smaller number of remaining fragments, make

it computationally possible to generate complex relational features in the second stage. The third

and fourth columns show the fraction of positive examples that are filtered out in the training and

testing sets. These fragments do not even reach the second stage. However, note that an article

may contain more than one fragment that represents a given slot; it is therefore sometimes still

possible for the classifier to pick the correct slot. That is, the reduction in the performance is lower

than the loss due to the filter.

Although the results of 1-NB-IE are not as good as those of 1-SNoW-IE due to the quality

of the classifier, the experiments with a second propositional algorithm exhibit the fact that our

relational learning framework is a general one. As indicated in (Craven & Slattery, 2001; Freitag,

2000) a simple-minded use of the naive Bayes algorithm is not competitive for this task. However,

when used on top of a framework that is able to exploit the relational nature of the data, it compares

favorably with ILP methods in some cases.
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2-SNoW-IE 1-SNoW-IE 1-NB-IE RAPIER

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

id 99.0 98.3 98.7± 1.3 98.3 96.3 97.3± 1.7 93.6 92.3 93.0± 3.0 98.0 97.0 97.5
title 65.3 40.0 49.2± 6.3 65.3 33.2 44.0± 6.8 36.8 35.3 36.1± 5.9 67.0 29.0 40.5
salary 84.1 54.2 65.9± 9.9 83.3 32.7 47.0± 9.9 23.4 70.1 35.1± 4.1 89.2 54.2 67.4
company 86.4 64.8 74.0± 8.6 73.4 65.9 69.5± 8.9 56.4 60.2 58.2± 9.7 76.0 64.8 70.0
recruiter 83.9 78.3 81.0± 5.1 71.8 73.5 72.6± 6.2 50.6 52.4 51.5± 7.4 87.7 56.0 68.4
state 93.7 95.0 94.3± 2.8 93.7 95.0 94.3± 2.8 92.6 91.3 91.9± 3.1 93.5 87.1 90.2
city 96.1 92.3 94.6± 2.1 94.2 93.2 93.7± 2.3 93.7 89.7 91.7± 3.0 97.4 84.3 90.4
country 97.0 94.0 95.5± 2.8 97.0 93.4 95.1± 3.1 93.9 91.2 92.5± 3.6 92.2 94.2 93.2
language 88.2 76.3 81.8± 3.0 83.2 61.0 70.4± 3.9 42.0 63.1 50.4± 3.1 95.3 71.6 81.8
platform 77.6 68.1 72.5± 4.2 65.8 50.9 57.4± 4.8 46.7 62.6 53.5± 4.0 92.2 59.7 72.5
application 78.4 54.6 64.4± 5.3 50.9 46.5 48.6± 5.3 54.4 61.2 57.6± 5.0 87.5 57.4 69.3
area 56.9 34.6 43.0± 4.5 46.1 32.5 38.1± 4.3 24.7 33.5 28.4± 3.1 66.6 31.1 42.4
req yrs exp 87.3 81.6 84.4± 5.1 84.0 79.6 81.8± 5.8 43.4 54.0 48.1± 7.2 80.7 57.5 67.2
desyrs exp 81.8 83.7 82.8± 9.0 89.3 58.1 70.4± 12.6 33.8 60.5 43.3± 11.4 94.6 81.4 87.5
req degree 98.3 70.7 82.3± 7.7 83.8 81.7 82.7± 6.3 71.9 78.1 74.9± 7.2 88.0 75.9 81.5
desdegree 100.0 38.1 55.2± 23.5 42.9 28.6 34.3± 21.5 31.7 61.9 41.9± 13.8 86.7 61.9 72.2
postdate 99.0 99.3 99.2± 0.9 99.0 99.3 99.2± 0.9 99.0 99.3 99.2± 0.9 99.3 99.7 99.5
total 86.6 72.0 77.6± 2.2 77.8 66.0 70.4± 2.3 58.1 68.0 61.6± 2.0 89.4 64.8 75.1

Table 4.5: Results forcomputer-related job postings

Computer-related Job Postings

In the experiment ofcomputer-related job postings, we used the same data and methodology as

with RAPIER. In particular, we report the results using 10-fold cross validation on 300 news-

group documents. Table 4.5 shows the results of our three systems, and the RAPIER (Califf, 1998)

system that uses words, part-of-speech tags, and semantic classes. Unlike the experiments onsem-

inar announcements, semantic classes do help RAPIER to achieve better performance in this case.

Nevertheless, this information is not used in any of our information extraction systems.

In terms of F1, 2-SNoW-IE outperforms RAPIER in slots liketitle , recruiter , state ,

city , andreq yrs exp , and has no statistical difference on others. As a result, the averageF1 is

slightly, but statistically significantly, better (despite not using the semantic class sensor). Similar

to the trend we observe in theseminar announcementsexperiment, 1-SNoW-IE and 1-NB-IE are

not as good as 2-SNoW-IE. While they still achieve an equal or higher level of performance on

some slots, they perform worse on others, and therefore the overallF1 are somewhat lower.

Since RAPIER is biased to generate more reliable rules, we notice that the precisions of these

slots tend to outnumber those in our systems. However, one advantage of using propositional

algorithms like SNoW or naive Bayes is that the trade-off of recall and precision can be easily

tuned by changing the value of a threshold parameter. In applications where precision is important,
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our system can output only slots with high activation values, which indicate the confidence of the

predictions.

Training Time

One key advantage of our framework is that the training time needed to construct a system is

much shorter than ILP-based systems. As reported in (Califf, 1998), running on an SGI-Origin-

200, RAPIER takes 8 hours to train on 240 seminar announcements when only words are used.

Adding part-of-speech tags and semantic classes increases the training time to 15 hours in average.

Similarly, to train on 270 job postings, the words only version and the full version of RAPIER

spend 26 and 42 hours respectively.

On the contrary, 1-SNoW-IE takes around 50 minutes both to extract features and train on 240

seminar announcements, and 110 minutes on 270 job postings, running on a Pentium-III 866MHz

machine. Depending on the filtering efficiency and the number of slots in the template, 2-SNoW-IE

takes a bit longer, but still finishes the process within an average of 2 hours forseminar announce-

mentsand 4 hours forjob postingsexperiments.

As the training time of a system is seldom reported in the literature, it is fairly hard to conduct

an extensive study of this issue. Even if the information is available, the use of different hardware

still does not allow exact comparisons. However, we believe the numbers reported here at least

provide some feeling for the significant computational difference.

4.3.2 Pruning Features and Negative Examples

As mentioned above, our approach deals with large scale learning both in terms of the number of

examples and the number of features. First, the modeling of the IE task as a supervised learning

task results in the generation of a large number of negative examples. Second, our feature gener-

ation approach yields a very large number of potential features. The following two experiments

study the effects of pruning examples and features on the performance of our system.
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Figure 4.4: Eliminate infrequent features inseminar announcementsexperiments (10-fold cross
validation)

Figure 4.4 presents the effect of pruning features. During learning, SNoW builds a histogram

that represents the number of feature that occurk times, for all values ofk. Pruning features

is done in a relative fashion. The horizontal axis in Figure 4.4 represents the percentage of the

tail of this histogram that was eliminated. That is, all features that occur less thanj times are

eliminated, as long as the total number of features eliminated do not exceedx% of the features.

Training continues for one more round over all the examples after features are eliminated (see

details in (Carlson, Rosen, & Roth, 2001)).

The result shows that removing features this way (as opposed to pruning based on weights, for

example) does not degrade the results, as long as20% of the frequent features are maintained.

The performance on thespeakerslot is the only exception, since it declines gradually as fea-

tures are eliminated. This may explain why our system performs extremely well on this difficult

slot. For this complex slot, many features that represent “exceptions” need to be taken into account

to guarantee a good prediction. Unlike traditional ILP learners, learning via a linear threshold
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Figure 4.5: Eliminate negative examples randomly inseminar announcementsexperiments (10-
fold cross validation)

function is able to make predictions that take into account a large number of relational features.

This can be contrasted with slots likestimeandetimethat are easy and on which the performance

does not suffer at all from pruning a large number of the features.

Figure 4.5 shows the effect of eliminating negative examples from the training set. As discussed

earlier, in IE tasks, the negative examples vastly outnumber the positive examples, and this has

significant computational consequences. This experiment addresses the question of whether all the

negative examples are needed for training.

Several “sophisticated” methods (e.g., the filters in our 2-stage architecture) can be used to

address this problem. These methods attempt to eliminate only negative examples that are “easy”,

and thus may not contribute to learning. In this experiment we have considered a very simple-

minded approach – we randomly eliminatex% of the negative examples for each slot separately.

The results clearly show that this strategy is very useful – there is no adverse effect on the

results as long as sufficiently many negative examples, about20% of them, are retained. As
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mentioned in Section 4.2.3, the highly skewed class distribution may be the explanation. The

main lesson here is that the performance degrades significantly only when (almost) only positive

examples are used. The reason is that the learning algorithm has no way to identify irrelevant

fragments. Note that the 2-stage architecture still gives the best F1 score compared to this random

sampling strategy. In addition, while random sampling of negative examples can help to cut the size

of training data, the number of negative testing examples is still unaffected. This is an important

issue when complicated RGFs are used and the time spent on feature extraction is significant.

4.4 Discussion

In this chapter, we have demonstrated how to apply the learning framework developed in Chapter 3

to build a basic information extraction system that identify certain phrases according to predefined

templates. Specifically, we concentrated on theseminar announcementand job postingdomains

and have shown that our systems outperform existing ILP-based or -inspired methods, while being

more efficient.

The information extraction problem tackled in this chapter is similar to other types of phrase

labeling problem in natural language processing. Examples includechunking(Tjong Kim Sang

& Buchholz, 2000), which recognizes the atomic phrases in sentences, andnamed entity recogni-

tion (Tjong Kim Sang & De Meulder, 2003), which identifies the types of phrases such asperson,

location, or organization. The IE problem in this chapter can be treated as a special entity recog-

nition problem, and therefore the same technology can be applied on these NLP tasks.

In addition to recognizing entities, identifying the relations among entities is also an important

problem for general information extraction. For example, whether the fields extracted in either the

job posting or seminar announcement domain belong to the same table asks for the relation among

these phrases. Although phrases from the same document are assumed to belong to the same table,

and therefore the relation recognition problem is simplified in this chapter, this is usually not the

case in general. In the next chapter, we extend the scope of information extraction to both entity
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and relation recognition.
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Chapter 5

Entity & Relation Recognition

This chapter develops a general framework for recognizing relations and entities in sentences,

while taking mutual dependencies among them into account. For example, thekill (KFJ, Os-

wald) relation in: “J. V. Oswald was murdered at JFK after his assassin,

R. U. KFJ... ” depends on identifying Oswald and KFJ aspeople, JFK being identified as a

location, and thekill relation between Oswald and KFJ; this, in turn, enforces that Oswald and KJF

arepeople.

In our framework, classifiers that identify entities and relations among them are first learned

from local information in the sentence; this information, along with constraints induced among

entity types and relations, is used to perform global inference that accounts for the mutual depen-

dencies among the entities and relations.

We develop two inference approaches based on Bayesian network and integer linear program-

ming for this problem and evaluate them in the context of simultaneously learning named entities

and relations. Our approaches allow us to efficiently incorporate domain and task specific con-

straints at decision time, resulting in significant improvements in the accuracy and the “human-

like” quality of the inference.
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5.1 Overview & Related Work

Recognizing and classifying entities and relations in text data is a key task in many NLP problems,

such as information extraction (IE) (Califf & Mooney, 1999; Freitag, 2000; Roth & Yih, 2001),

question answering (QA) (Voorhees, 2000) and story comprehension (Hirschman, Light, Breck,

& Burger, 1999). In a typical IE application of constructing a job database, the system has to

extract meaningful entities liketitle and salary, and it needs to determine whether the entities

are associated with the same position. In a QA system, many questions ask for specific entities

involved in some relations. For example, the question “Where was Poe born?” in the TREC-9

question answering track (Voorhees, 2000) asks for thelocationentity in which Poe wasborn. The

question “Who killed Lee Harvey Oswald?” seeks apersonentity that has the relationkill with the

personLee Harvey Oswald.

In all cases we know of, the tasks of identifying entities and relations are treated as separate

problems. The common procedure is to first identify and classify entities using a named entity

recognizer and only then determine the relations between the entities. However, this approach

has several problems. First, if the named entity recognizer is not perfect, the errors it makes will

propagate to the relation classifier. For example, if “Boston” is mislabeled as a person, it will never

be classified as the location of Poe’s birthplace. Second, relation information is sometimes crucial

to resolving ambiguous named entity recognition. For instance, if the information that entity “JFK”

is the victim of the assassination is given, the named entity recognizer is unlikely to misclassify it

as a location (e.g., the JFK airport).

As opposed to the common approach, we want to consider these local problems together, and

make a global prediction with respect to the constraints among the output. Informally, for the

problem of recognizing thekill (KFJ, Oswald)relation in the sentence “J. V. Oswald was

murdered at JFK after his assassin, R. U. KFJ... ”, it requires making sev-

eral local decisions, such as identifying named entities in the sentence, in order to support the

relation identification. For instance, it may be useful to identify that Oswald and KFJ arepeople,

61



and JFK is alocation. This, in turn, may help to identify that thekill action is described in the

sentence. At the same time, the relationkill constrains its arguments to bepeople(or at least, not

to belocations) and helps to enforce that Oswald and KFJ are likely to bepeople, while JFK is not.

In our model, we first learn a collection of “local” predictors such as entity and relation identi-

fiers. Their output is used to represent a conditional distribution for each entity and relation, given

the observed data. At decision time, given a sentence, we produce a global decision that optimizes

over the suggestions of the classifiers that are active in the sentence, known constraints among

them and, potentially, domain or tasks specific constraints relevant to the current decision.

We test two inference approaches following this proposed framework. The first one creates

a Bayesian network and incorporates the constraints in the conditional probability tables (CPTs).

The second one relies on the integer linear programming optimization technique, which allows the

representation of both hard and soft constraints.

The rest of this chapter is organized as follows. Section 5.2 defines the problem in a formal

way. Sections 5.3 and 5.4 describe two inference approaches to this problem. Section 5.5 records

the experiments we did and exhibits some promising results. Finally, Section 5.6 discusses some

of the open problems and future work in this framework.

5.2 Global Inference of Entities/Relations

The problem at hand is that of producing a coherent labeling of entities and relations in a given

sentence. Conceptually, the entities and relations can be viewed, taking into account the mutual

dependencies, as the graph in Figure 5.1, where the nodes represent entities (e.g., phrases) and

the links denote the binary relations between the entities. Each entity and relation has several

properties. Some of the properties, such as words inside the entities and POS tags of words in the

context of the sentence, are easy to acquire. However, other properties like the semantic types (i.e.,

class labels, such as “people”, “locations”) of phrases are difficult. Identifying the labels of entities

and relations is treated here as a learning problem. In particular, we learn these target properties as
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functions of all other properties of the sentence.

E1

R31

Spelling

POS

...

Label

Label-1

Label-2

...

Label-n

E2 E3

R32R32

R23R12

R13

Figure 5.1: Conceptual view of entities and relations

To describe the problem in a formal way, we first define sentences and entities as follows.

Definition 5.2.1 (Sentence & Entity) A sentenceS is a linked list which consists of wordsw and

entitiesE . An entity can be a single word or a set of consecutive words with a predefined boundary.

Entities in a sentence are labeled asE = {E1, E2, · · · , En} according to their order, and they take

values (i.e., labels) that range over a set of entity typesLE . The value assigned toEi ∈ E is

denotedfEi
∈ LE .

Notice that determining the entity boundaries is also a difficult problem – thesegmentation(or

phrase detection) problem (Abney, 1991; Punyakanok & Roth, 2001). Here we assume it is solved

and given to us as input; thus we only concentrate on classification.

Dole ’s wife , Elizabeth , is a native of Salisbury , N.C.
 E1         E2                E3

Figure 5.2: A sentence that has three entities
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Example 5.2.1 The sentence in Figure 5.2 has three entities:E1 = “Dole”, E2 = “Elizabeth”,

andE3 = “Salisbury, N.C.”

A relation is defined by the entities that are involved in it (its arguments). Note that we only

discuss binary relations.

Definition 5.2.2 (Relation) A (binary) relationRij = (Ei, Ej) represents the relation betweenEi

andEj, whereEi is the first argument andEj is the second. In addition,Rij can range over a set

of entity typesLR. We useR = {Rij}{1≤i,j≤n;i6=j} as the set of binary relations on the entitiesE

in a sentence. Two special functionsN 1 andN 2 are used to indicate the argument entities of a

relationRij. Specifically,Ei = N 1(Rij) andEj = N 2(Rij).

Example 5.2.2 In the sentence given in Figure 5.2, there are six relations between the entities:R12

= (“Dole”, “Elizabeth”), R21 = (“Elizabeth”, “Dole”), R13 = (“Dole”, “Salisbury, N.C.”), R31

= (“Salisbury, N.C.”, “Dole”), R23 = (“Elizabeth”, “Salisbury, N.C.”), and R32 = (“Salisbury,

N.C.”, “Elizabeth”)

We define the types (i.e., classes) of relations and entities as follows.

Definition 5.2.3 (Classes)We denote the set of predefined entity classes and relation classes asLE

andLR respectively.LE has one special elementotherent, which represents any unlisted entity

class. Similarly,LR also has one special elementother rel, which means the involved entities are

irrelevant or the relation class is undefined.

When clear from the context, we useEi andRij to refer to the entity and relation, as well as their

types (class labels).

Example 5.2.3 SupposeLE = { otherent, person, location} andLR = { other rel, born in,

spouseof }. For the entities in Figure 5.2,E1 andE2 belong topersonandE3 belongs tolocation.

In addition, relationR23 is born in, R12 andR21 arespouseof. Other relations areother rel.
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The class label of a single entity or relation depends not only on its local properties, but also

on properties of other entities and relations. The classification task is somewhat difficult since the

predictions of entity labels and relation labels are mutually dependent. For instance, the class label

of E1 depends on the class label ofR12 and the class label ofR12 also depends on the class label

of E1 andE2. While we can assume that all the data is annotated for training purposes, this cannot

be assumed at evaluation time. We may presume that some local properties such as the words or

POS tags are given, but none of the class labels for entities or relations is.

To simplify the complexity of the interaction within the graph but still preserve the character-

istic of mutual dependency, we abstract this classification problem in the following probabilistic

framework. First, the classifiers are trained independently and used to estimate the probabilities of

assigning different labels given the observation (that is, the easily classified properties in it). Then,

the output of the classifiers is used as a conditional distribution for each entity and relation, given

the observation. This information, along with the constraints among the relations and entities, is

used to make global inferences.

The class labels of entities and relations in a sentence must satisfy some constraints. For

example, ifE1 (the first argument ofR12) is a location, thenR12 cannot beborn in because the

first argument of relationborn in has to be aperson. We define constraints as follows.

Definition 5.2.4 (Constraint) A constraint is a function that maps a relation label and an entity

label to either 0 or 1 (dissatisfy or satisfy the constraint). Specifically,C1 : LR × LE → {0, 1}

constrains values of the first argument of a relation.C2 is defined similarly and constrains the

second argument that a relation can take.

The constraint function can be treated as a set, which consists of pairs of relation and entity

labels that satisfy the constraint. For example, (born in, person) is in C1 but not inC2 because

the first entity of relationborn in has to be apersonand the second entity can only be alocation

instead of aperson.

We seek an inference algorithm that can produce a coherent labeling of entities and relations in
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a given sentence. Furthermore, it follows, as best as possible the recommendation of the entity and

relation classifiers, but also satisfies natural constraints that exist on whether specific entities can

be the argument of specific relations, whether two relations can occur together at the same time, or

any other information that might be available at the inference time (e.g., suppose it is known that

entities A and B represent the same location; one may like to incorporate an additional constraint

that prevents an inference of the type: “C lives in A; C does not live in B”).

We note that a large number of problems can be modeled this way. Examples include problems

such as chunking sentences (Punyakanok & Roth, 2001), coreference resolution and sequencing

problems in computational biology. In fact, each of the components of our problem here, namely

the separate task of recognizing named entities in sentences and the task of recognizing semantic

relations between phrases, can be modeled this way. However, our goal is specifically to consider

interacting problems at different levels, resulting in more complex constraints among them, and

exhibit the power of our method.

5.3 Bayesian Network Inference

Each nontrivial property of the entities and relations, such as the class label, depends on a very

large number of variables. In order to predict the most suitable coherent labels, we would like to

make inferences on several variables. However, when modeling the interaction between the target

properties, it is crucial to avoid accounting for dependencies among the huge set of variables on

which these properties depend. This is because incorporating these dependencies into our inference

is unnecessary and will make the inference intractable. Instead, we can abstract these dependencies

in a way by learning the probability of each property conditioned upon the observation. The

number of features on which this learning problem depends could be huge, and they can be of

different granularity and based on previous learned predicates (e.g., POS), as abstracted into the

triangles in Figure 5.1. Inference is then made based on the probabilities. This approach is similar

to (Punyakanok & Roth, 2001; Lafferty, McCallum, & Pereira, 2001) only that there it is restricted
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to sequential constraint structures.

The following subsections describe the details of these two stages. Section 5.3.1 explains the

feature extraction method and learning algorithm we used. Section 5.3.2 introduces the idea of

using a Bayesian network in search of the best global class labeling and the applied inference

algorithm.

5.3.1 Learning Basic Classifiers

Although the labels of entities and relations from a sentence mutually depend on each other, two

basic classifiers for entities and relations are first learned, in which a multi-class classifier for

E(R) is learned as a function of all other “known” properties of the observation. The classifier

for entities is a named entity classifier, in which the boundary of an entity is predefined. On

the other hand, the relation classifier is given a pair of entities, which denote the two arguments

of the target relation. Accurate predictions of these two classifiers seem to rely on complicated

syntax analysis and semantics related information of the whole sentence. However, we derive

weak classifiers by treating these two learning tasks as shallow text processing problems. This

strategy has been successfully applied on several NLP tasks, such as information extraction (Califf

& Mooney, 1999; Freitag, 2000; Roth & Yih, 2001) and chunking (i.e. shallow paring) (Munoz,

Punyakanok, Roth, & Zimak, 1999). It assumes that the class labels can be decided by local

properties, such as the information provided by the words around or inside the target and their

POS tags. Examples include the spelling of a word, part-of-speech, and semantic related attributes

acquired from external resources such as WordNet (Miller, Beckwith, Fellbaum, Gross, & Miller,

1990).

However, raw features may be too simple and unable to represent sophisticated concepts. Re-

searcher have argued that relation learning is needed for complicated learning tasks such as NLP

problems. The traditional approach of relational learning is to apply ILP methods, which has sev-

eral disadvantages. For instance, the learning algorithm may need modifying to adapt different

problems and it is not trivial to transform classification results to probabilities, which is an impor-
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tant issue in our framework. Alternatively, we handle this relational learning problem using the

strategy suggested in Chapter 3: creating relational features first, and then applying propositional

learning algorithms to learn on them.

The propositional learner we use is SNoW. Based on its learned activation values, we use it as

a probabilistic classifier. More details can be found in Section 2.1.

5.3.2 Bayesian Inference Model

We construct a Bayesian network (see Section 2.2 for the introduction of Bayesian network) for

each sentence that represents the constraints existing among R’s and E’s. Then, we use the classi-

fiers from section 5.3.1 to compute the probabilitiesP (E|observations) andP (R|observations),

and use the Bayesian network to compute the most probable global predictions of the class labels.

The structure of our Bayesian network, which represents the constraints is a two-layer graph.

In particular, the variableE’s andR’s are the nodes in the network, where theE nodes are in one

layer, and theR nodes are in the other. Since the label of a relation depends on the entity classes

of its arguments, the links in the network connect the entity nodes and the relation nodes that have

these entities as arguments. For instance, nodeRij has two incoming links from nodesEi and

Ej. As an illustration, Figure 5.3 shows a Bayesian network that consists of 3 entity nodes and 6

relation nodes. Property 5.3.1 describes some conditional probabilitiesP (Rij|Ei, Ej) that encodes

the constraints in Definition 5.2.4.

Property 5.3.1 The probability of the label of relationRij given the labels of its argumentsEi and

Ej has the following properties.

• P (Rij = other rel|Ei = e1, Ej = e2) = 1, if there exists nor ∈ LR, such that(r, e1) ∈ C1

and(r, e2) ∈ C2.

• P (Rij = r|Ei = e1, Ej = e2) = 0, if (r, e1) /∈ C1 or (r, e2) /∈ C2.

Note that the conditional probabilities do not need to be specified manually. In fact, they can
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Figure 5.3: Bayesian network of 3 entity nodes and 6 relation nodes

be easily learned from an annotated training dataset. For those CPT entries that are not governed

by Property 5.3.1, we decide the values by counting the frequencies in the training data.

Finding a most probable class assignment to the entities and relations is equivalent to finding

the assignment of all the variables in the Bayesian network that maximizes the joint probability. In

other words, the global predictione1, e2, ..., en, r12, r21, ..., rn(n−1) satisfies the following equation.

(e1, ..., en, r12, ..., rn(n−1)) = argmax
ei,rjk

Prob(E1, ..., En, R12, ..., Rn(n−1)).

However, this most-probable-explanation (MPE) inference problem is intractable if the network

contains loops (undirected cycles) (Roth, 1996), which is exactly the case in our network. There-

fore, we resort to the following approximation method instead.

Recently, researchers have achieved great success in solving the problem of decoding messages

through a noisy channel with the help of Bayesian networks (Gallager, 1962; MacKay, 1999). The

network structure used in their problem is similar to the network used here, namely a loopy bipar-

tite DAG (directed acyclic graph). The inference algorithm they used is Pearl’s belief propagation

algorithm (Pearl, 1988), which outputs exact posteriors in linear time if the network is singly
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connected (i.e. without loops) but does not guarantee to converge for loopy networks. However,

researchers have empirically demonstrate that by iterating the belief propagation algorithm several

times, the output values often converge to the right posteriors (Murphy, Weiss, & Jordan, 1999).

Due to the existence of loops, we also apply belief propagation algorithm iteratively as our infer-

ence procedure.

5.4 Integer Linear Programming Inference

While it is fairly easy to use, the Bayesian network model may not be expressive enough since

it allows no cycles. To fully model the problem, cycles may be needed. For example, the class

labels ofR12 andR21 actually depend on each other (e.g., ifR12 is born in, thenR21 will not be

born in or kill ). Similarly, the class labels ofE1 andE2 can depend on the label ofR12. To fully

represent the mutual dependencies, we would like to explore other probabilistic models that are

more expressive than the Bayesian network.

The most direct way to formalize our inference problem is via the formalism of Markov Ran-

dom Field (MRF) theory (Li, 2001). Rather than doing that, for computational reasons, we first

use a fairly standard transformation of MRF to a discrete optimization problem (see (Kleinberg &

Tardos, 1999) for details). Specifically, under weak assumptions we can view the inference prob-

lem as the following optimization problem, which aims to minimize the objective function that is

the sum of the following two cost functions.

Assignment cost: the cost of deviating from the assignment of the variablesV given by the

classifiers. The specific cost function we use is defined as follows: Letl be the label assigned to

variableu ∈ V. If the marginal probability estimation isp = P (fu = l), then the assignment cost

cu(l) is− log p.

Constraint cost: the cost imposed by breaking constraints between neighboring nodes. The

specific cost function we use is defined as follows: Consider two entity nodesEi, Ej and its cor-
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responding relation nodeRij; that is,Ei = N 1(Rij) andEj = N 2(Rij). The constraint cost

indicates whether the labels are consistent with the constraints. In particular, we use:d1(fEi
, fRij

)

is 0 if (fRij
, fEi

) ∈ C1; otherwise,d1(fEi
, fRij

) is∞ 1. Similarly, we used2 to force the consistency

of the second argument of a relation.

Since we are seeking the most probable global assignment that satisfies the constraints, there-

fore, the overall cost function we optimize, for a global labelingf of all variables is:

C(f) =
∑
u∈V

cu(fu) +
∑

Rij∈R

[
d1(fRij

, fEi
) + d2(fRij

, fEj
)
]

(5.1)

Unfortunately, it is not hard to see that the combinatorial problem (Equation 5.1) is compu-

tationally intractable even when placing assumptions on the cost function (Kleinberg & Tardos,

1999). The computational approach we adopt is to develop alinear programming(LP) formula-

tion of the problem, and then solve the correspondinginteger linear programming(ILP) problem.

Our LP formulation is based on the method proposed by Chekuri, Khanna, Naor, and Zosin (2001).

Since the objective function (Equation 5.1) is not a linear function in terms of the labels, we intro-

duce new binary variables to represent different possible assignments to each original variable; we

then represent the objective function as a linear function of these binary variables.

Let x{u,i} be an indicator variable, defined to be1 if and only if variableu is labeledi and 0

otherwise, whereu ∈ E , i ∈ LE or u ∈ R, i ∈ LR. For example,x{E1,2} = 1 when the label of

entityE1 is 2;x{R23,3} = 0 when the label of relationR23 is not 3. Letx{Rij ,r,Ei,e1} be an indicator

variable representing whether relationRij is assigned labelr and its first argument,Ei, is assigned

label e1. For instance,x{R12,1,E1,2} = 1 means the label of relationR12 is 1 and the label of its

first argument,E1, is 2. Similarly,x{Rij ,r,Ej ,e2} = 1 indicates thatRij is assigned labelr and its

second argument,Ej, is assigned labele2. With these definitions, the optimization problem can be

represented as the following integer linear program.

1In practice, we use a very large number (e.g.,915).
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min
∑
E∈E

∑
e∈LE

cE(e) · x{E,e} +
∑
R∈R

∑
r∈LR

cR(r) · x{R,r}

+
∑

Ei,Ej∈E
Ei 6=Ej

[ ∑
r∈LR

∑
e1∈LE

d1(r, e1) · x{Rij ,r,Ei,e1} +
∑
r∈LR

∑
e2∈LE

d2(r, e2) · x{Rij ,r,Ej ,e2}

]

subject to:

∑
e∈LE

x{E,e} = 1 ∀E ∈ E (5.2)∑
r∈LR

x{R,r} = 1 ∀R ∈ R (5.3)

x{E,e} =
∑
r∈LR

x{R,r,E,e} ∀E ∈ E and

∀R ∈ {R : E = N 1(R) or E = N 2(R)} (5.4)

x{R,r} =
∑
e∈LE

x{R,r,E,e} ∀R ∈ R and

∀E = N 1(R) or E = N 2(R) (5.5)

x{E,e} ∈ {0, 1} ∀E ∈ E , e ∈ LE (5.6)

x{R,r} ∈ {0, 1} ∀R ∈ R, r ∈ LR (5.7)

x{R,r,E,e} ∈ {0, 1} ∀R ∈ R, r ∈ LR,

E ∈ E , e ∈ LE (5.8)

Equations (5.2) and (5.3) require that each entity or relation variable can only be assigned one

label. Equations (5.4) and (5.5) assure that the assignment to each entity or relation variable is

consistent with the assignment to its neighboring variables. Equations (5.6), (5.7), and (5.8) are

the integral constraints on these binary variables.

There are several advantages of representing the problem in an LP formulation. First of all,

linear (in)equalities are fairly general and are able to represent many types of constraints (e.g., the

decision time constraint in the experiment in Section 5.5.2). More importantly, an ILP problem at
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this scale can be solved very quickly using current numerical packages, such as Xpress-MP (2004)

or CPLEX (2003). General strategies of solving an ILP problem are introduced in Section 2.3.2.

5.5 Experiments

The following subsections describe how we conduct experiments for the Bayesian inference model

and the integer linear programming based inference procedure.

5.5.1 Experiments for the Bayesian Network Based Inference

Data Preparation

In order to build different datasets, we first collected sentences from TREC documents, which are

mostly daily news such as Wall Street Journal, Associated Press, and San Jose Mercury News.

Among the collected sentences, 245 sentences contain relationkill (i.e., two entities that have the

murder-victimrelation); 179 sentences contain relationborn in (i.e., a pair of entities where the

second is the birthplace of the first). In addition to the above sentences, we also collected 502

sentences that contain no relations.2

Entities in these sentences are segmented by the simple rule: consecutive proper nouns and

commas are combined and treated as an entity. Predefined entity class labels includeother ent,

person, andlocation. Moreover, relations are defined by every pair of entities in a sentence, and

the relation class labels defined areother rel, kill , andbirthplace.

Three datasets are constructed using the collected sentences. Dataset “kill” has all the 245

sentences of relationkill . Dataset “bornin” has all the 179 sentences of relationborn in. The third

dataset “all” mixes all the sentences.
2The dataset is available at http://l2r.cs.uiuc.edu/∼cogcomp/Data/ER/
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Tested Approaches

We compare three approaches in the experiments:basic, omniscient, andBN. The first approach,

basic, tests our baseline – the performance of the basic classifiers. As described in Section 5.3.1,

these classifiers are learned independently using local features and make predictions on entities

and relations separately, without taking global interactions into account. The features extracted

are described as follows. For the entity classifier, features from the words around each entity are:

words, tags, conjunctions of words and tags, bigrams and trigrams of words and tags. Features

from the entity itself include the number of words it contains, bigrams of words in it, and some

attributes of the words inside such as the prefix and suffix. In addition, whether the entity has some

strings that match the names of famous people and places is also used as a feature. For the relation

classifier, features are extracted from words around and between the two entity arguments. The

types of features include bigrams, trigrams, words, tags, and words related to “kill” and “birth”

retrieved from WordNet.

The second approach,omniscient, is similar tobasic. The only difference here is the labels

of entities are revealed to the R classifier and so are the labels of relations to the E classifier.

It is certainly impossible to know the true entity and relation labels in advance. However, this

experiment may give us some idea about how much the performance of the entity classifier can

be enhanced by knowing whether the target is involved in some relations, and also how much the

relation classifier can be benefited from knowing the entity labels of its arguments. In addition, it

also provides a comparison to see how well the Bayesian network inference model can improve

the results.

The third approach,BN, tests the ability of making global inferences in our Bayesian network

inference framework. We use the Bayes Net Toolbox for Matlab by Kevin Murphy3 to implement

the network and set the maximum number of the iteration of belief propagation algorithm as 20.

Given the probabilities estimated by basic classifiers, the network reasons for the labels of the

entities and relations globally in a sentence. Compared to the first two approaches, where some

3available at http://www.cs.ubc.ca/∼murphyk/Software/BNT/bnt.html
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predictions may violate the constraints, the Bayesian network model incorporates the constraints

between entities and relations, thus all the predictions it makes will be coherent.

All the experiments of these approaches are done in 5-fold validation. In other words, these

datasets are randomly separated into 5 disjoint subsets, and experiments are done 5 times by itera-

tively using 4 of them as training data and the rest as testing.

Results

The experimental results in terms of recall, precision,andF1 for datasets “kill”, “bornin”, and

“all” are given in Table 5.1, Table 5.2, and Table 5.3 respectively. We discuss two interesting facts

of the results as follows.

First, the Bayesian network approach tends to decrease recall in a small degree but increase

precision significantly. This phenomenon is especially clear on the classification results of some

relations. As a result, the F1 value of the relation classification results is still enhanced to the extent

that is near or even higher than the results of theOmniscientapproach. This may be explained by

the fact that if the label of a relation is predicted as positive (i.e. notother rel), the types of its

entity arguments must satisfy the constraints. This inference process reduces the number of false

positive predictions, and thus enhances the precision.

Second, knowing the class labels of relations does not seem to help the entity classifier much.

In all three datasets, the difference ofBasicandOmniscientapproaches is usually less than 3% in

terms of F1, which is not very significant given the size of our datasets. This phenomenon may be

due to the fact that only a few entities in a sentence are involved in some relations. Therefore, it is

unlikely that the entity classifier can use the relation information to correct its prediction.

Approach person location kill
Rec Prec F1 Rec Prec F1 Rec Prec F1

Basic 96.6 92.3 94.4 76.3 91.9 83.1 61.8 57.2 58.6
BN 89.0 96.1 92.4 78.8 86.3 82.1 49.8 85.4 62.2

Omniscient 96.4 92.6 94.5 75.4 90.2 81.9 67.7 63.6 64.8

Table 5.1: Results for dataset “kill”
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Approach person location born in
Rec Prec F1 Rec Prec F1 Rec Prec F1

Basic 85.5 90.7 87.8 89.5 93.2 91.1 81.4 63.4 70.9
BN 87.0 90.9 88.8 87.5 93.4 90.3 87.6 70.7 78.0

Omniscient 90.6 93.4 91.7 90.7 96.5 93.4 86.9 71.8 78.0

Table 5.2: Results for dataset “bornin”

Approach person location
Rec Prec F1 Rec Prec F1

Basic 92.1 87.0 89.4 83.2 81.1 82.0
BN 78.8 94.7 86.0 83.0 81.3 82.1

Omniscient 93.4 87.3 90.2 83.5 83.1 83.2
Approach kill born in

Rec Prec F1 Rec Prec F1
Basic 43.8 78.6 55.0 69.0 72.9 70.5
BN 47.2 86.8 60.7 68.4 87.5 76.6

Omniscient 52.8 79.5 62.1 76.1 71.3 73.2

Table 5.3: Results for dataset “all”

5.5.2 Experiments for Integer Linear Programming Inference

We describe below two experiments on the problem of simultaneously recognizing entities and

relations. In the first, we view the task as a knowledge acquisition task – we let the system read

sentences and identify entities and relations among them. Given that this is a difficult task which

may require quite often information beyond the sentence, we consider also a “forced decision” task,

in which we simulate a question answering situation – we ask the system, say, “who killed whom”

and evaluate it on identifying correctly the relation and its arguments, given that it is known that

somewhere in this sentence this relation is active. In addition, this evaluation exhibits the ability

of our approach to incorporate task specific constraints at decision time.

We annotated the named entities and relations in some sentences from the TREC documents.

In order to effectively observe the interaction between relations and entities, we picked 1,437
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sentences that have at least one active relation. Among those sentences, there are 5,336 entities,

and 19,048 pairs of entities (binary relations). Entity labels include 1,685persons, 1,968locations,

978 organizationsand 705other ent. Relation labels include 406locatedin, 394work for, 451

orgBasedin, 521 live in, 268kill , and 17,007other rel. Note that most pairs of entities have no

active relations at all. Therefore, relationother rel significantly outnumbers others. Examples of

each relation label and the constraints between a relation variable and its two entity arguments are

shown in Table 5.4.

Relation Entity1 Entity2 Example
locatedin loc loc (New York, US)
work for per org (Bill Gates, Microsoft)

orgBasedin org loc (HP, Palo Alto)
live in per loc (Bush, US)

kill per per (Oswald, JFK)

Table 5.4: Relations of interest and the corresponding constraints

In order to focus on the evaluation of our inference procedure, we assume the problem of

segmentation(or phrase detection) (Abney, 1991; Punyakanok & Roth, 2001) is solved, and the

entity boundaries are given to us as input; thus we only concentrate on their classifications.

We evaluate our LP based inference procedure by observing its effect in different approaches

of combining the entity and relation classifiers. The first approach is to train entity and relation

classifiersseparately. In particular, the relation classifier does not know the labels of its entity

arguments, and the entity classifier does not know the labels of relations in the sentence, either. For

the entity classifier, one set of features are extracted from words within a size 4 window around the

target phrase. They are: (1) words, part-of-speech tags, and conjunctions of them; (2) bigrams and

trigrams of the mixture of words and tags. In addition, some other features are extracted from the

target phrase, which are listed in Table 5.5.

For the relation classifier, there are three sets of features:

1. features similar to those used in the entity classification are extracted from the two argument

4We collected names of famous places, people and popular titles from other data sources in advance.
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symbol explanation
icap the first character of a word is capitalized
acap all characters of a word are capitalized
incap some characters of a word are capitalized
suffix the suffix of a word is “ing”, “ment”, etc.

bigram bigram of words in the target phrase
len number of words in the target phrase

place4 the phrase is/has a known place’s name
prof4 the phrase is/has a professional title (e.g., Lt.)
name4 the phrase is/has a known person’s name

Table 5.5: Some features extracted from the target phrase

Pattern Example
arg1 , arg2 San Jose, CA
arg1 , · · · a · · · arg2 prof John Smith, a Starbucks manager· · ·
in/at arg1 in/at/, arg2 Officials in Perugia in Umbria province said· · ·
arg2 prof arg1 CNN reporter David McKinley· · ·
arg1 · · · native of· · · arg2 Elizabeth Dole is a native of Salisbury, N.C.
arg1 · · · based in/at arg2 · · · a manager for K mart based in Troy, Mich. said· · ·

Table 5.6: Some patterns used in relation classification

entities of the relation;

2. conjunctions of the features from the two arguments;

3. some patterns extracted from the sentence or between the two arguments.

Some features in category 3 are “the number of words between arg1 and arg2 ”, “whether

arg1 and arg2 are the same word”, or “arg1 is the beginning of the sentence and has words that

consist of all capitalized characters”, wherearg1 andarg2 represent the first and second argument

entities respectively. Table 5.6 presents some patterns we use.

In addition to theseparateapproach, we also test several pipeline models, includingE→ R, R

→ E andE↔ R. E→ R first trains an entity classifier, and its predictions on the two entity argu-

ments of a relation are used conjunctively as additional features in learning the relation classifier.

Similarly, R→ E first trains the relation classifier, and its output is used as additional features in

the entity classifier. TheE↔ R model is the combination of the above two. It takes the entity

classifier in theR→ E model and the relation classifier in theE→ Ras its final classifiers.
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Although the true labels of entities and relations are known during training, only thepredicted

labels are available in testing. Learning on the predictions of the previous stage classifier presum-

ably makes the current stage classifier more tolerant to the mistakes. In fact, we also observe this

phenomenon empirically. For example, when the relation classifier is trained using the true entity

labels, the performance is much worse than using the predicted entity labels.

The last approach,omniscient, tests the conceptual upper bound of this entity/relation classi-

fication problem. It also trains the two classifiers separately. However, it assumes that the entity

classifier knows thecorrectrelation labels, and similarly the relation classifier knows theright en-

tity labels as well. This additional information is then used as features in training and testing. Note

that this assumption is totally unrealistic. Nevertheless, it may give us a hint on how accurate the

classifiers with global inference can achieve. Finally, we apply the LP based inference procedure

to the above 5 models, and observe how it improves the performance.

5.5.3 Results

Tables 5.7 and 5.8 show the performance of each approach inF1. The results show that the in-

ference procedure consistently improves the performance of the 5 models, both in entities and

relations. One interesting observation is that theomniscientclassifiers, which know the correct

Approach person location organization
Rec Prec F1 Rec Prec F1 Rec Prec F1

Separate 89.5 89.8 89.4 87.0 91.5 89.0 67.6 91.3 77.0
Separate w/ Inf 90.5 90.6 90.4 88.6 91.8 90.1 71.0 91.2 79.4

E→ R 89.5 89.8 89.4 87.0 91.5 89.0 67.6 91.3 77.0
E→ R w/ Inf 89.7 90.1 89.7 87.0 91.7 89.1 69.0 91.2 78.0

R→ E 89.1 88.7 88.6 88.1 89.8 88.9 71.4 89.3 78.7
R→ E w/ Inf 88.6 88.6 88.3 88.2 89.4 88.7 72.1 88.5 79.0

E↔ R 89.1 88.7 88.6 88.1 89.8 88.9 71.4 89.3 78.7
E↔ R w/ Inf 89.5 89.1 89.0 88.7 89.7 89.1 72.0 89.5 79.2

Omniscient 94.9 93.7 94.2 92.4 96.6 94.4 88.1 93.5 90.7
Omniscient w/ Inf 96.1 94.2 95.1 94.0 97.0 95.4 88.7 94.9 91.7

Table 5.7: Results of long entity classification
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Approach locatedin work for orgBasedin
Rec Prec F1 Rec Prec F1 Rec Prec F1

Separate 53.0 43.3 45.2 41.9 55.1 46.3 35.6 85.4 50.0
Separate w/ Inf 51.6 56.3 50.5 40.1 74.1 51.2 35.7 90.8 50.8

E→ R 56.4 52.5 50.7 44.4 60.8 51.2 42.1 77.8 54.3
E→ R w/ Inf 55.7 53.2 50.9 42.9 72.1 53.5 42.3 78.0 54.5

R→ E 53.0 43.3 45.2 41.9 55.1 46.3 35.6 85.4 50.0
R→ E w/ Inf 53.0 49.8 49.1 41.6 67.5 50.4 36.6 87.1 51.2

E↔ R 56.4 52.5 50.7 44.4 60.8 51.2 42.1 77.8 54.3
E↔ R w/ Inf 55.7 53.9 51.3 42.3 72.0 53.1 41.6 79.8 54.3

Omniscient 62.9 59.5 57.5 50.3 69.4 58.2 50.3 77.9 60.9
Omniscient w/ Inf 62.9 61.9 59.1 50.3 79.2 61.4 50.9 81.7 62.5

Approach live in kill
Rec Prec F1 Rec Prec F1

Separate 39.7 61.7 48.0 81.5 75.3 77.6
Separate w/ Inf 41.7 68.2 51.4 80.8 82.7 81.4

E→ R 50.0 58.9 53.5 81.5 73.0 76.5
E→ R w/ Inf 50.0 57.7 53.0 80.6 77.2 78.3

R→ E 39.7 61.7 48.0 81.5 75.3 77.6
R→ E w/ Inf 40.6 64.1 49.4 81.5 79.7 80.1

E↔ R 50.0 58.9 53.5 81.5 73.0 76.5
E↔ R w/ Inf 49.0 59.1 53.0 81.5 77.5 79.0

Omniscient 56.1 61.7 58.2 81.4 76.4 77.9
Omniscient w/ Inf 57.3 63.9 59.9 81.4 79.9 79.9

Table 5.8: Results of relation classification

entity or relation labels, can still be improved by the inference procedure. This demonstrates the

effectiveness of incorporating constraints, even when the learning algorithm may be able to learn

them from the data.

One of the more significant results in our experiments, we believe, is the improvement in the

quality of the decisions. As mentioned in Section 5.1, incorporating constraints helps to avoid

inconsistency in classification. It is interesting to investigate how often such mistakes happen

without global inference, and see how effectively the global inference enhances this.

For this purpose, we define thequality of the decision as follows. For an active relation of

which the label is classified correctly, if both its argument entities are also predicted correctly,

we count it as acoherentprediction. Quality is then the number ofcoherentpredictions divided
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by the sum ofcoherentandincoherentpredictions. When the inference procedure is not applied,

5% to 25% of the predictions are incoherent. Therefore, the quality is not always good. On the

other hand, our global inference procedure takes the natural constraints into account, so it never

generates incoherent predictions. If the relation classifier has the correct entity labels as features,

a good learner should learn the constraints as well. As a result, the quality ofomniscientis almost

as good asomniscient with inference.

Another experiment we did is theforced decisiontest, which boosts the F1 score of the “kill”

relation to 86.2%. Here we consider only sentences in which the “kill” relation is active. We force

the system to determine which of the possible relations in a sentence (i.e., which pair of entities)

has this relation by adding a new linear inequality. This is a realistic situation (e.g., in the context

of question answering) in that it adds an external constraint, not present at the time of learning the

classifiers and it evaluates the ability of our inference algorithm to cope with it. The results exhibit

that our expectations are correct.

5.6 Discussion

We presented two different inference approaches based on Bayesian network and integer linear

programming for global inference where decisions depend on the outcomes of several different

but mutually dependent classifiers. Although the Bayesian network approach has shown its fea-

sibility in our preliminary experiments, the DAG structure may not provide enough expressivity

for problems that involve more components and constraints. On the other hand, the integer linear

programming formalism is able to incorporate a fairly general constraint structure that may deviate

from the sequential nature typically studied, and can find the optimal solution efficiently. Interested

readers may refer to Appendix A for more detailed examples of using integer linear programming

for global inference, as well as transforming logic rules to linear constraints.

Contrary to general search schemes (e.g., beam search), which do not guarantee optimality,

the linear programming approach provides an efficient way to finding the optimal solution. The
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key advantage of the linear programming formulation is its generality and flexibility; in particular,

it supports the ability to incorporate classifiers learned in other contexts, “hints” supplied and

decision time constraints, and reason with all these for the best global prediction. In sharp contrast

with the typically used pipeline framework, our global inference approaches do not blindly trust

the results of some classifiers, and therefore are able to overcome mistakes made by classifiers with

the help of constraints.

Our experiments have demonstrated these advantages by considering the interaction between

entity and relation classifiers. In fact, more classifiers can be added and used within the same

integer linear programming framework. For example, if coreference resolution is available, it is

possible to incorporate it in the form of constraints that force the labels of the co-referred entities

to be the same (but, of course, allowing the global solution to reject the suggestion of these clas-

sifiers). Consequently, this may enhance the performance of entity/relation recognition and, at the

same time, correct possible coreference resolution errors. Another example is to use chunking in-

formation for better relation identification; suppose, for example, that we have available chunking

information that identifies Subj+Verb and Verb+Object phrases. Given a sentence that has the verb

“murder”, we may conclude that the subject and object of this verb are in a “kill” relation. Since

the chunking information is used in the global inference procedure, this information will contribute

to enhancing its performance and robustness, relying on having more constraints and overcoming

possible mistakes by some of the classifiers. Moreover, in an interactive environment where a user

can supply new constraints (e.g., a question answering situation) this framework is able to make

use of the new information and enhance the performance at decision time, without retraining the

classifiers.

In addition to the aforementioned research directions, we would also like to explore the appli-

cation of our framework in a boot-strapping manner. The main difficulty in applying learning on

NLP problems is not lack of text corpus, but lack oflabeleddata. Boot-strapping, applying the

classifiers to autonomously annotate the data and using the new data to train and improve existing

classifiers, is a promising approach. Since the precision of our framework is pretty high, it seems
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possible to use the global inference to annotate new data. Based on this property, we can derive an

EM-like approach for labeling and inferring the types of entities and relations simultaneously. The

basic idea is to use the global inference output as a mean to annotate entities and relations. The

new annotated data can then be used to train classifiers, and the whole process is repeated again.

As we have shown, our formulation supports not only improved accuracy, but also improves

the ‘human-like” quality of the decisions. We believe that it has the potential to be a powerful way

for supporting natural language inferences.
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Chapter 6

Semantic Role Labeling

Semantic role labeling is a task that identifies the arguments of each verb in a sentence. It can

be treated as an extended version of relation recognition, where the verb with its correct sense

represents the relation, and the arguments can be viewed as the entities that have the relation.

In this chapter, we present a general framework for semantic role labeling. It combines a

machine learning technique with an integer linear programming based inference procedure, which

incorporates linguistic and structural constraints into the decision process. The system achieves

very competitive results, and is one of the best systems in the CoNLL-2004 shared task on semantic

role labeling. In addition, we study experimentally the necessity of syntactic parsing for semantic

role labeling. Inspired by the conclusion, we develop a state-of-the-art semantic role labeling

system by combining several systems based on different syntactic parsers.

6.1 Overview and Related Work

Semantic parsing of sentences is believed to be an important task toward natural language un-

derstanding, and has immediate applications in tasks such as information extraction and question

answering. We studysemantic role labeling(SRL) in which for each verb in a sentence, the goal

is to identify all constituents that fill a semantic role, and to determine their roles, such as Agent,

Patient or Instrument, and their adjuncts, such as Locative, Temporal or Manner.

The PropBank project (Kingsbury & Palmer, 2002), which provides a large human-annotated
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corpus of semantic verb-argument relations, has enabled researchers to apply machine learning

techniques to improve SRL systems (Gildea & Palmer, 2002; Chen & Rambow, 2003; Gildea &

Hockenmaier, 2003; Pradhan, Hacioglu, Ward, Martin, & Jurafsky, 2003; Surdeanu, Harabagiu,

Williams, & Aarseth, 2003; Pradhan, Ward, Hacioglu, Martin, & Jurafsky, 2004; Xue & Palmer,

2004). However, most systems rely heavily on the full syntactic parse trees. Therefore, the overall

performance of the system is largely determined by the quality of the automatic syntactic parsers

of which state of the art (Collins, 1999; Charniak, 2001) is still far from perfect.

Alternativelyshallowsyntactic parsers (i.e., chunkers and clausers), although not providing as

much information as a full syntactic parser, have been shown to be more robust in their specific

task (Li & Roth, 2001). This raises the very natural and interesting question of quantifying the

necessity of the full parse information to semantic parsing and whether it is possible to use only

shallow syntactic information to build an outstanding SRL system.

Although PropBank is built by adding semantic annotation to the constituents on syntactic

parse trees in Penn Treebank, it is not clear how important syntactic parsing is for building an SRL

system. To the best of our knowledge, this problem was first addressed by Gildea and Palmer

(2002). In their attempt of using limited syntactic information, the parser wasvery shallow–

clauses were not available and only chunks were used. Moreover, the pruning stage in (Gildea &

Palmer, 2002) was too strict since only chunks are considered as argument candidates, meaning

that over 60% of the arguments were not treated as candidates. As a result, the overall recall in

their approach was very low. As we will demonstrate later, high recall of the pruning stage is in

fact essential to a quality SRL system.

Using only the shallow parse information in an SRL system has largely been ignored until

the recent CoNLL-04 shared task competition (Carreras & Marquez, 2004a). In this competition,

participants were restricted to only shallow parse information for their SRL systems. As a result,

it became clear that the performance of the best shallow parse based system (Hacioglu, Pradhan,

Ward, Martin, & Jurafsky, 2004) is only 10% in F1 below the best system that uses full parse

information (Pradhan, Ward, Hacioglu, Martin, & Jurafsky, 2004). In addition, there has not been
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a true quantitative comparison with shallow parsing. First, the CoNLL-04 shared task used only a

subset of the data for training. Furthermore, its evaluation treats the continued and referential tags

differently, which makes the performance metric stricter and the results worse. Second, an SRL

system is usually complicated and consists of several stages. It is still unknown how much and

where precisely the syntactic information helps the most.

The goal of this chapter is twofold. First, we make a fair comparison between SRL systems

which use full parse trees and those exclusively using shallow syntactic information. Our shallow

parsing based SRL system achieves very competitive results and has been evaluated in the CoNLL-

04 shared task competition. This comparison brings forward a better analysis on the necessity of

full parsing in the SRL task. Second, to relieve the dependency of the SRL system on the quality

of automatic parsers, we improve semantic role labeling significantly by combining several SRL

systems based on different state-of-art full parsers.

To make our conclusions applicable to general SRL systems, we adhere to a widely used two

step system architecture. In the first step, the system is trained to identify argument candidates for

a given verb predicate. In the second step, the system classifies the argument candidates into their

types. In addition, it is also common to use a simple procedure to prune obvious non-candidates

before the first step, and to use post-processing inference to fix inconsistent predictions after the

second step. We also employ these two additional steps.

In our comparison between the systems using shallow and full syntactic information, we found

the most interesting result is that while each step of the system using shallow information exhibits

very good performance, the overall performance is significantly inferior to the system that uses full

information. This necessity of full parse information is especially noticeable at the pruning stage.

In addition, we produce a state-of-the-art SRL system by combining of different SRL systems

based on two (potentially noisy) automatic full parsers (Collins, 1999; Charniak, 2001).

The rest of this chapter is organized as follows. Section 6.2 introduces the task of semantic role

labeling in more detail. Section 6.3 describes the 4-stage architecture of our SRL system, which

includes pruning, argument identification, argument classification, and inference. In addition, the
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features used are also explained. Section 6.4 presents the evaluation results of our system in the

CoNLL-04 shared task competition. Section 6.5 explains why and where the full parsing informa-

tion contributes to SRL by conducting a series of carefully designed experiments. Inspired by the

result, we propose an approach that combines different SRL systems based on joint inference in

Section 6.6. Finally, Section 6.7 concludes this chapter.

6.2 Semantic Role Labeling (SRL) Task

The goal of the semantic-role labeling task is to discover the verb-argument structure for a given

input sentence. For example, given a sentence “ Ileft my pearls to my daughter-in-law in my will”,

the goal is to identify different arguments of the verbleft which yields the output:

[A0 I] [V left ] [A1 my pearls] [A2 to my daughter-in-law] [AM-LOC in my will ].

Here A0 represents theleaver, A1 represents thething left, A2 represents thebenefactor, AM-

LOC is an adjunct indicating the location of the action, and V determines the verb. In addition,

each argument can be mapped to a constituent in its corresponding syntactic full parse tree.

Following the definition of the PropBank and CoNLL-2004 shared task, there are six different

types of arguments labeled as A0-A5 and AA. These labels have different semantics for each verb

as specified in the PropBank Frame files. In addition, there are also 13 types of adjuncts labeled as

AM-adj whereadj specifies the adjunct type. In some cases, an argument may span over different

parts of a sentence, the label C-arg is used to specify the continuity of the arguments, as shown in

the example below.

[A1 The pearls] , [A0 I] [V said] , [C-A1 were left to my daughter-in-law].

In some other cases, an argument might be a relative pronoun that in fact refers to the actual agent

outside the clause. In this case, the actual agent is labeled as the appropriate argument type,arg,

while the relative pronoun is instead labeled as R-arg. For example,

[A1 The pearls] [R-A1 which] [A0 I] [V left] , [A2 to my daughter-in-law] are fake.
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The distribution of these argument labels is fairly unbalanced. In the official release of Prop-

Bank I, core arguments (A0–A5 and AA) occupy 71.26%, where the largest parts are A0 (25.39%)

and A1 (35.19%). The rest portion is mostly the adjunct arguments (24.90%). The continued

(C-arg) and referential (R-arg) arguments are relatively fewer, occupying 1.22% and 2.63% re-

spectively. For more definitions of PropBank and the semantic role labeling task, readers can refer

to (Kingsbury & Palmer, 2002) and (Carreras & Marquez, 2004a).

6.3 SRL System Architecture

Our SRL system consists of four stages:pruning, argument identification, argument classification,

andinference. In particular, the goal of pruning and argument identification is to identify argument

candidates for a given verb predicate. The system only classifies the argument candidates into their

types in the stage of argument classification. Linguistic and structural constraints are incorporated

in the inference stage to resolve inconsistent global predictions. This section describes how we

build these four stages, including the features used in training the classifiers.

6.3.1 Pruning

When the full parse tree of a sentence is available, only the constituents in the parse tree are

considered as argument candidates. In addition, our system exploits the heuristic rules introduced

by Xue and Palmer (2004) to filter out simple constituents that are very unlikely to be arguments.

The heuristic is a recursive process starting from the verb of which arguments to be identified.

It first returns the siblings of the verb as candidates; then it moves to the parent of the verb, and

collects the siblings again. The process goes on until it reaches the root. In addition, if a constituent

is aPP (propositional phrase), its children are also collected.
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6.3.2 Argument Identification

The argument identification stage utilizes binary classification to identify whether a candidate is

an argument or not. When full parsing is available, we train and apply the binary classifiers on

the constituents supplied by the pruning stage. When only shallow parsing is available, the system

does not have the pruning stage, and also does not have constituents to begin with. Therefore,

conceptually the system has to consider all possible subsequences (i.e., consecutive words) in a

sentence as potential argument candidates. We avoid this by using a learning scheme by first

training two classifiers, one to predict the beginnings of possible arguments, and the other the

ends. The predictions are combined to form argument candidates that do not violate the following

constraints.

1. Arguments cannot cover the predicate (i.e., the active verb).

2. Arguments cannot overlap with the clauses (they can be embedded in one another).

3. If a predicate is outside a clause, its arguments cannot be embedded in that clause.

The features used in the full parsing and shallow parsing settings are described as follows.

Features when full parsing is available

Most of the features used in our system are standard features which include

• Predicate and POS tag of predicatefeatures indicate the lemma of the predicate verb and

its POS tag.

• Voice feature indicates passive/active voice of the predicate.

• Phrase typefeature provides the phrase type of the constituent.

• Head word and POS tag of the head wordfeature provides the head word and its POS tag

of the constituent. We use rules introduced by Collins (1999) to extract this feature.
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• Position feature describes if the constituent is before or after the predicate relative to the

position in the sentence.

• Path records the traversal path in the parse tree from the predicate to the constituent.

• Subcategorizationfeature describes the phrase structure around the predicate’s parent. It

records the immediate structure in the parse tree that expands to its parent.

We also use the following additional features.

• Verb classfeature is the class of the predicate described in PropBank Frames.

• Lengthsof the target constituent, in the numbers of words and chunks separately.

• Chunk tells if the target argument is, embeds, overlaps, or is embedded in a chunk with its

type.

• Chunk pattern encodes the sequence of chunks from the current words to the predicate.

• Chunk pattern length feature counts the number of chunks in the argument.

• Clause relative position feature is the position of the target word relative to the predi-

cate in the pseudo-parse tree constructed only from clause constituents. There are four

configurations—target constituent and predicate share the same parent, target constituent

parent is an ancestor of predicate, predicate parent is an ancestor of target word, or other-

wise.

• Clause coveragedescribes how much of the local clause (from the predicate) is covered by

the target argument.

• NEG feature is active if the target verb chunk hasnot or n’t .

• MOD feature is active when there is a modal verb in the verb chunk. The rules of the

NEG andMOD features are used in a baseline SRL system developed by Erik Tjong Kim

Sang (Carreras & Marquez, 2004a).
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Features when only shallow parsing is available

Features used are similar to those used by the system with full parsing except those that need full

parse trees to generate. For these types of features, we either try to mimic the features with some

heuristics rules or discard them. The details of these features are as follows.

• Phrase typeuses a simple heuristics to identify onlyVP, PP, andNP.

• Head word and POS tag of the head wordare the rightmost word forNP, and the leftmost

word forVPandPP.

• Shallow-Path records the traversal path in the pseudo-parse tree constructed only from the

clause structure and chunks.

• Shallow-Subcategorizationfeature describes the chunk and clause structure around the

predicate’s parent in the pseudo-parse tree.

• Syntactic frame features are discarded.

6.3.3 Argument Classification

This stage assigns the final argument labels to the argument candidates supplied from the previous

stage. A multi-class classifier is trained to classify the types of the argument candidates. In addi-

tion, to reduce the excessive candidates mistakenly output by the previous stage, the classifier can

also classify the argument asnull (meaning “not an argument”) to discard the argument.

The features used here are the same as those used in the argument identification stage. However,

when full parsing are available, an additional feature introduced by Xue and Palmer (2004) is used.

• Syntactic frame describes the sequential pattern of the noun phrases and the predicate in

the sentence.
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6.3.4 Inference

The purpose of this stage is to incorporate some prior linguistic and structural knowledge, such as

“arguments do not overlap” or “each verb takes at most one argument of each type.” This knowl-

edge is used to resolve any inconsistencies of argument classification in order to generate final

legitimate predictions. We design an inference procedure based on integer linear programming

(ILP). It takes as input the confidence scores over each type of the arguments supplied by the

argument classifier. The output is the optimal solution that maximizes the linear sum of the con-

fidence scores (e.g., the conditional probabilities estimated by the argument classifier), subject to

the constraints that encode the domain knowledge.

In this subsection we first introduce the constraints and the inference problem in the seman-

tic role labeling task. We then demonstrate how we apply integer linear programming (ILP) to

generate the global label assignment.

Constraints over Argument Labeling

Formally, the argument classifier attempts to assign labels to a set of arguments,S1:M , indexed

from 1 to M . Each argumentSi can take any label from a set of argument labels,P, and the

indexed set of arguments can take a set of labels,c1:M ∈ PM . If we assume that the classifier

returns a score,score(Si = ci), corresponding to the likelihood of seeing labelci for argumentSi,

then, given a sentence, the unaltered inference task is solved by maximizing the overall score of

the arguments,

ĉ1:M = argmax
c1:M∈PM

score(S1:M = c1:M) = argmax
c1:M∈PM

M∑
i=1

score(Si = ci). (6.1)

In the presence of global constraints derived from linguistic information and structural consid-

erations, our system seeks for alegitimatelabeling that maximizes the score. Specifically, it can

be viewed as the solution space is limited through the use of a filter function,F , that eliminates

many argument labelings from consideration. It is interesting to contrast this with previous work
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that filters individual phrases (Carreras & Marquez, 2004b). Here, we are concerned with global

constraints as well as constraints on the arguments. Therefore, the final labeling becomes

ĉ1:M = argmax
c1:M∈F(PM )

M∑
i=1

score(Si = ci) (6.2)

The filter function used considers the following constraints:

1. Arguments cannot cover the predicate except those that contain only the verb or the verb and

the following word.

2. Arguments cannot overlap with the clauses (they can be embedded in one another).

3. If a predicate is outside a clause, its arguments cannot be embedded in that clause.

4. No overlapping or embedding arguments.

5. No duplicate argument classes for core arguments, such as A0–A5 and AA.

6. Exactly one V argument per proposition (i.e., a sentence given the active verb).

7. If there is a C-V argument, then there should be a sequence of consecutive V, A1, and C-V

pattern. For example, whensplit is the verb in “split it up”, the A1 argument is “it” and C-V

argument is “up”.

8. If there is an R-arg argument, then there has to be anarg argument. That is, if an argument

is a reference to some other argumentarg, then this referenced argument must exist in the

sentence.

9. If there is a C-arg argument, then there has to be anarg argument; in addition, the C-arg

argument must occur afterarg. This is stricter than the previous rule because the order of

appearance also needs to be considered.

10. Given the predicate, some argument classes are illegal (e.g. predicate ’stalk’ can take only

A0 or A1). This linguistic information can be found inPropBank Frames.
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We reformulate the constraints as linear (in)equalities by introducing indicator variables. The

optimization problem (Eq. 6.2) is solved using ILP.

Using Integer Linear Programming

As discussed previously, a collection of potential arguments is not necessarily a valid semantic

labeling since it must satisfy all of the constraints. In this context, inference is the process of

finding thebest(according to Equation 6.1) valid semantic labels that satisfy all of the specified

constraints. We take a similar approach that has been previously used for entity/relation recognition

(See Chapter 5), and model this inference procedure as solving an ILP problem.

An integer linear programis basically the same as alinear program. The cost function and the

(in)equality constraints are all linear in terms of the variables. The only difference in an integer

linear program is the variables can only take integers as their values. In our inference problem, the

variables are in fact binary. A general binary integer linear programming problem can be stated as

follows.

Given a cost vectorp ∈ <d, a set of variables,u = (u1, . . . , ud) and cost matricesC1 ∈

<c1 ×<d,C2 ∈ <c2 ×<d , wherec1 andc2 are the numbers of inequality and equality constraints

andd is the number of binary variables. The ILP solutionu∗ is the vector that maximizes the cost

function,

u∗ = argmax
u∈{0,1}d

p · u,

subject to
C1u ≥ b1, andC2u = b2,

whereb1,b2 ∈ <d, and for allu ∈ u, u ∈ {0, 1}.

To solve the problem of Equation 6.2 in this setting, we first reformulate the original cost

function
∑M

i=1 score(Si = ci) as a linear function over several binary variables, and then represent

the filter functionF using linear inequalities and equalities.

We set up a bijection from the semantic labeling to the variable setu. This is done by setting

u to a set of indicator variables. Specifically, letuic = [Si = c] be the indicator variable that
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represents whether or not the argument typec is assigned toSi, and letpic = score(Si = c).

Equation 6.1 can then be written as an ILP cost function as

argmax
u∈{0,1}d

M∑
i=1

|P|∑
c=1

picuic,

subject to
|P|∑
c=1

uic = 1 ∀uic ∈ u,

which means that each argument can take only one type. Note that this new constraint comes from

the variable transformation, and is not one of the constraints used in the filter functionF .

Constraints 1 through 3 can be evaluated on a per-argument basis – for the sake of efficiency,

arguments that violate these constraints are eliminated even before given to the argument classi-

fier. Next, we show how to transform the constraints in the filter function into the form of linear

(in)equalities overu, and use them in this ILP setting.

Constraint 4: No overlapping or embedding If argumentsSj1 , . . . , Sjk occupy the same word

in a sentence, then this constraint restricts only one of the arguments to be assigned to an argument

type. In other words,k − 1 arguments will be the special classnull, which means the argument

candidate is not a legitimate argument. If the special classnull is represented by the symbolφ,

then for every set of such arguments, the following linear equality represents this constraint.

k∑
i=1

ujiφ = k − 1

Constraint 5: No duplicate argument classes Within the same sentence, several types of ar-

guments cannot appear more than once. For example, a predicate can only take one A0. This

constraint can be represented using the following inequality.

M∑
i=1

uiA0 ≤ 1
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Constraint 6: Exactly one V argument For each verb, there is one and has to be one V ar-

gument, which represents the active verb. Similarly, this constraint can be represented by the

following equality.
M∑
i=1

uiV = 1

Constraint 7: V–A1–C-V pattern This constraint is only useful when there are three consecu-

tive candidate arguments in a sentence. Suppose argumentsSj1 , Sj2 , Sj3 are consecutive. IfSj3 is

C-V, thenSj1 andSj2 have to be V and A1, respectively. This if-then constraint can be represented

by the following two linear inequalities.

uj3C-V ≥ uj1V, anduj3C-V ≥ uj2A1

Constraint 8: R-arg arguments Suppose the referenced argument type is A0 and the referential

type is R-A0. The linear inequalities that represent this constraint are:

∀m ∈ {1, . . . ,M} :
M∑
i=1

uiA0 ≥ umR-A0

If there areγ reference argument pairs, then the total number of inequalities needed isγM .

Constraint 9: C-arg arguments This constraint is similar to the reference argument constraints.

The difference is that the continued argumentarg has to occur before C-arg. Assume that the

argument pair is A0 and C-A0, and argumentSji
appears beforeSjk

if i ≤ k. The linear inequalities

that represent this constraint are:

∀m ∈ {2, . . . ,M} :
m−1∑
i=1

ujiA0 ≥ umC-A0

Constraint 10: Illegal argument types Given a specific verb, some argument types should

never occur. For example, most verbs don’t have arguments A5. This constraint is represented by
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summing all the corresponding indicator variables to be 0.

M∑
i=1

uiA5 = 0

Using ILP to solve this inference problem enjoys several advantages. Linear constraints are

very general, and are able to represent many types of constraints. Previous approaches usually

rely on dynamic programming to resolve non overlapping/embedding constraints (i.e., Constraint

4) when the constraint structure is sequential, but are unable to handle other constraints. The

ILP approach is flexible enough to handle more expressive constraints. Although solving an ILP

problem is NP-hard, with the help of today’s commercial numerical packages, this problem can

usually be solved very fast in practice. For instance, it only takes about 10 minutes to solve the

inference problem for4305 sentences on a Pentium-III 800 MHz machine in our experiments.

Note that ordinary search methods (e.g., beam search) are not necessarily faster than solving an

ILP problem and do not guarantee the optimal solution.

6.4 Experimental Results in CoNLL-04

We begin the evaluation of our system in the setting of CoNLL-04. In this competition, only shal-

low parse information is allowed; therefore, our system does not have the pruning stage. The data

provided in the CoNLL-2004 semantic-role labeling shared task consists of a portion of PropBank

corpus. The training set is extracted from TreeBank (Marcus, Santorini, & Marcinkiewicz, 1993)

section 15–18, the development set, used in tuning parameters of the system, from section 20, and

the test set from section 21.

We first compare this system using only the scoring function from the argument identification

stage, with only the non-overlapping/embedding constraints. In this simplified version of our SRL

system, the two word based classifiers,start andend, are trained to be multi-class classifiers that

predict the first and last word of an argument and its type. In addition, we evaluate the effectiveness
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Prec. Rec. F1

ST classifiers, non-overlap 70.54 61.50 65.71
ST classifiers, all constraints 70.97 60.74 65.46
Argument classifier, non-overlap 69.69 64.75 67.13
Argument classifier, all constraints71.96 64.93 68.26

Table 6.1: Summary of the experimental results on the development set.ST classifiersare the sim-
plified SRL system based on the original argument identification stage only.Argument classifieris
the full system. All numbers are for overall performance.

Prec. Rec. F1

Without Inference 86.95 87.24 87.10
With Inference 88.03 88.23 88.13

Table 6.2: Results of the SRL system when argument boundaries are known. Inference improves
performance by correcting the labels that violate the linguistic constraints, rather than restricting
structural properties since the correct boundaries are given. All numbers are for overall perfor-
mance on the development set.

of using only this constraint versus all constraints, as described in Section 6.3.4.

Table 6.1 shows how additional constraints over the standard non-overlapping constraints im-

prove performance on the development set. The argument scoring is chosen from either the

ST classifiers or the argument classifier and each is evaluated by considering simply the non-

overlapping/embedding constraint or the full set of constraints. To make a fair comparison, param-

eters were set separately to optimize performance when using the argument identification results.

In general, using all constraints increases F1 by about 1%, but slightly decreases the performance

when only the ST classifiers are used. Also, using the complete system architecture improves both

precision and recall, and the enhancement reflected in F1 is about 2.5%.

It is interesting to find out how well the argument classifier can perform given perfectly seg-

mented arguments. This evaluates the quality of the argument classifier, and also provides a con-

ceptual upper bound. Table 6.2 first shows the results without using inference (i.e.F(PM) = PM ).

The second row shows adding inference to the phrase classification can further improve F1 by 1%.

Finally, the overall result on the official test set is given in Table 6.3. Note that the result here is

not comparable with the best in this domain (Pradhan, Ward, Hacioglu, Martin, & Jurafsky, 2004)

where the full parse tree is assumed given. For a fair comparison, our system was among the best at
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CoNLL-04, where the best system (Hacioglu, Pradhan, Ward, Martin, & Jurafsky, 2004) achieves

a 69.49 F1 score.

Dist. Prec. Rec. F1

Overall 100.00 70.07 63.07 66.39
A0 26.87 81.13 77.70 79.38
A1 35.73 74.21 63.02 68.16
A2 7.44 54.16 41.04 46.69
A3 1.56 47.06 26.67 34.04
A4 0.52 71.43 60.00 65.22
AM-ADV 3.20 39.36 36.16 37.69
AM-CAU 0.51 45.95 34.69 39.53
AM-DIR 0.52 42.50 34.00 37.78
AM-DIS 2.22 52.00 67.14 58.61
AM-EXT 0.15 46.67 50.00 48.28
AM-LOC 2.38 33.47 34.65 34.05
AM-MNR 2.66 45.19 36.86 40.60
AM-MOD 3.51 92.49 94.96 93.70
AM-NEG 1.32 85.92 96.06 90.71
AM-PNC 0.89 32.79 23.53 27.40
AM-TMP 7.78 59.77 56.89 58.30
R-A0 1.66 81.33 76.73 78.96
R-A1 0.73 58.82 57.14 57.97
R-A2 0.09 100.00 22.22 36.36
R-AM-TMP 0.15 54.55 42.86 48.00

Table 6.3: CoNLL-2004 shared task result on the test set

6.5 The Necessity of Syntactic Parsing

We study the necessity of syntactic parsing experimentally by observing the effects of using full

parsing and shallow parsing at each stage of an SRL system. In Section 6.5.1, we first describe

how we prepare the data. The comparison of full parsing and shallow parsing on the three stages

(excluding the inference stage) is presented in the reversed order (Sections 6.5.2, 6.5.3, 6.5.4).
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6.5.1 Experimental Setting

We use PropBank sections 02 through 21 as training data, and section 23 as testing. In order to

apply the standard CoNLL-04 evaluation script, our system conforms to both the input and output

format defined in the shared task.

The CoNLL-04 evaluation metric is slightly more restricted since an argument prediction is

only considered correct when all itscontinuedarguments (C-arg) are correct andreferentialargu-

ments (R-arg) are included – these requirements are often absent in previous SRL systems, given

that they only occupy a very small percentage of the data. To provide a fair comparison, we also

report the performance when discarding continued and referential arguments. Following the nota-

tion used in (Xue & Palmer, 2004), this evaluation metric is referred as “argM+”, which considers

all the core arguments and adjunct arguments.

The goal of the experiments in this section is to understand the effective contribution of full

parsing versus shallow parsing using only the part-of-speech tags, chunks, and clauses. In addi-

tion, we also compare performance when using the correct (gold standard) versus using automatic

parse data. The automatic full parse trees are derived using Charniak’s parser (Charniak, 2001)

(version 0.4). In automatic shallow parsing, the information is generated by a state-of-the-art POS

tagger (Even-Zohar & Roth, 2001), chunker (Punyakanok & Roth, 2001), and clauser (Carreras &

Marquez, 2004b).

6.5.2 Argument Classification

To evaluate the performance gap between full parsing and shallow parsing in argument classifica-

tion, we assume the argument boundaries are known, and only train classifiers to classify the labels

of these arguments. In this stage, the only difference betweenfull parsingandshallow parsingis

the construction of three full parsing features:path, subcategorizationandsyntactic frame. As

described in Section 6.3,path andsubcategorizationcan be approximated byshallow-pathand

shallow-subcategorizationusing chunks and clauses. However, it is unclear how to mimic the syn-
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tactic frame feature since it relies on the internal structure of a full parse tree. Therefore, it does

not have a corresponding feature in the shallow parsing case.

Table 6.4 reports the experimental results of argument classification when argument boundaries

are known. Although full parsing features seem to help when using the gold standard data, the

difference in F1 is only 0.32% and 0.29% for the CoNLL-04 and ArgM+ evaluation respectively.

When the automatic (full and shallow) parsers are used, the gap is smaller.

Full Parsing Shallow Parsing
Gold (CoNLL-04) 91.32 91.00
Auto (CoNLL-04) 90.93 90.69

Gold (ArgM+) 91.83 91.54
Auto (ArgM+) 91.10 90.93

Table 6.4: The accuracy of argument classification when argument boundaries are known

Lesson When the argument boundaries are known, the performance of the full parsing systems

is about the same as the shallow parsing system.

6.5.3 Argument Identification

Argument identification is an important stage that effectively reduces the number of argument

candidates after pruning. Given an argument candidate, an argument identifier is a binary classifier

that decides whether or not the candidate should be considered as an argument. To evaluate the

influence of full parsing in this stage, the candidate list used here is the pruning results on the gold

standard parse trees.

Similar to the argument classification stage, the only difference between full parsing and shal-

low parsing is the use ofpath and subcategorizationfeatures. Again, we replace them with

shallow-pathandshallow-subcategorizationwhen the binary classifier is trained using the shal-

low parsing information.

Table 6.5 reports the performance of the argument identifier on the test set using the direct

predictions of the trained binary classifier. The recall and precision of the full parsing system are
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around 2 to 3 percents higher than the shallow parsing system on the gold standard data. As a

result, the F1 score is 2.5% higher. The performance on automatic parse data is unsurprisingly

lower, but the difference between full parsing and shallow parsing is relatively the same. In terms

of filtering efficiency, around 25% of the examples are predicted as positive. In other words, both

argument identifiers filter out around 75% of the argument candidates after pruning.

Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 96.53 93.57 95.03 93.66 91.72 92.68
Auto 94.68 90.60 92.59 92.31 88.36 90.29

Table 6.5: The performance of argument identification after pruning (based on the gold standard
full parse trees)

Since the recall in argument identification sets the upper bound of the recall in argument clas-

sification, in practice, the threshold that predicts examples as positive is usually lowered to allow

more positive predictions. That is, a candidate is predicted as positive when its probability estima-

tion is larger than the threshold. Table 6.6 shows the performance of the argument identifiers when

the threshold is 0.1.

Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 92.13 95.62 93.84 88.54 94.81 91.57
Auto 89.48 94.14 91.75 86.14 93.21 89.54

Table 6.6: The performance of argument identification after pruning (based on the gold standard
full parse trees) and with threshold=0.1

Since argument identification is just an intermediate step of a complete system, a more realistic

evaluation method is to see how each final system performs. Table 6.7 and Table 6.8 report the final

results in recall, precision, and F1 in CoNLL-04 and ArgM+ metrics. The F1 difference is about

4.5% when using the gold standard data. However, when automatic parsers are used, shallow

parsing is in fact slightly better. This may be due to the fact that shallow parsers are more accurate

in chunk or clause predictions compared to a regular full parser (Li & Roth, 2001).
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Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 88.81 89.35 89.08 84.19 85.03 84.61
Auto 84.21 85.04 84.63 86.17 84.02 85.08

Table 6.7: The CoNLL-04 evaluation of the overall system performance when pruning (using the
gold standard full parse trees) is available

Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 89.02 89.57 89.29 84.46 85.31 84.88
Auto 84.38 85.38 84.87 86.37 84.36 85.35

Table 6.8: ArgM+ performance of the overall system when pruning (using the gold standard full
parse trees) is available

Lesson Full parsing helps in argument identification. However, when the automatic shallow

parser is more accurate than the full parser, using the full parsing information may not have advan-

tages over shallow parsing.

6.5.4 Pruning

As shown in the previous two subsections, the performance difference of full parsing and shallow

parsing is not large when the pruning information is given. We conclude that the main contribution

of the full parse is in the pruning stage. Since the shallow parsing system does not have enough

information for the pruning heuristics, we train two word based classifiers to replace the pruning

stage (similar to the simplified SRL system in Section 6.4). One classifier is trained to predict

whether a given word is the start (S) of an argument; the other classifier is to predict the end (E) of

an argument. If the product of probabilities of a pair of S and E predictions is larger than a prede-

fined threshold, then this pair is considered as an argument candidate. The pruning comparison of

using the classifiers and heuristics is shown in Table 6.9.

Amazingly, the classifier pruning strategy seems better than the heuristics. With about the

same recall, the classifiers achieve higher precision. However, to really compare systems using

full parsing and shallow parsing, we still need to see the overall performance. We build two
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Full Parsing Classifier th=0.04
Prec Rec F1 Prec Rec F1

Gold 25.94 97.27 40.96 29.58 97.18 45.35
Auto 22.79 86.08 36.04 24.68 94.80 39.17

Table 6.9: The performance of pruning

semantic role systems based on full parsing and shallow parsing. The full parsing system follows

the pruning, argument identification, argument classification, and inference stages, as described

earlier. For the shallow parsing system, pruning is replaced by the word-based pruning classifiers,

and the rest stages are designed only to use shallow parsing as described in previous sections.

Table 6.10 and Table 6.11 show the overall performance in the two evaluation metrics.

Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 88.81 89.35 89.08 75.34 75.28 75.31
Auto 77.09 75.51 76.29 75.48 67.13 71.06

Table 6.10: The CoNLL-04 evaluation of the overall system performance

Full Parsing Shallow Parsing
Prec Rec F1 Prec Rec F1

Gold 89.02 89.57 89.29 75.35 75.20 75.27
Auto 77.09 75.57 76.32 75.54 67.14 71.09

Table 6.11: ArgM+ performance of the overall system

As indicated in the tables, the gap in F1 between the full parsing and shallow parsing systems

enlarges to more than 13% on the gold standard data. At first glance, this result seems to contradict

our conclusion in Section 6.5.3. After all, if the pruning stage of the shallow parsing SRL system

performs equally well or even better, the overall performance gap in F1 should be small.

After we carefully examine the output of the word-based classifier pruning, we realize that it

in fact filters out “easy” candidates, and leaves examples that are difficult to the later stages. To be

specific, these argument candidates often overlap and differ only with one or two words. On the

other hand, the pruning heuristics based on full parsing never outputs overlapping candidates. The

following argument identification stage can be thought of as good in discriminating different types
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of candidates.

Lesson The most crucial contribution of full parsing is in pruning. The internal tree structure

helps significantly in discriminating argument candidates, which makes the work easy to the fol-

lowing stages.

6.6 Joint Inference

The empirical study in Section 6.5 indicates the performance of an SRL system primarily depends

on the very first stage – pruning, which is derived directly from the full parse trees. This also means

that in practice the quality of the syntactic parser is decisive to the quality of the SRL system. To

improve semantic role labeling, one possible way is to combine different SRL systems through a

joint inference stage, given that the systems are derived using different full parse trees.

To test this idea, we first build two SRL systems that use Collins’ parser (Collins, 1999)1 and

Charniak’s parser (Charniak, 2001) respectively. In fact, these two parsers have noticeably different

output. Applying pruning heuristics on the output of Collins’ parser produces a list of candidates

with 81.05% recall. Although this number is significantly lower that 86.08% recall produced by

Charniak’s parser, the union of the two candidate lists still significantly improves recall to 91.37%.

We construct the two systems by implementing the first three stages, namely pruning, argument

identification, and argument classification. When a testing sentence is given, a joint inference stage

is used to resolve the inconsistency of the output of argument classification in these two systems.

We first briefly review the objective function used in the inference procedure introduced in

Section 6.3.4. Formally speaking, the argument classifier attempts to assign labels to a set of

arguments,S1:M , indexed from 1 toM . Each argumentSi can take any label from a set of argument

labels,P, and the indexed set of arguments can take a set of labels,c1:M ∈ PM . If we assume that

the argument classifier returns an estimated conditional probability distribution,Prob(Si = ci),

then, given a sentence, the inference procedure seeks a global assignment that maximizes the

1We use the Collins’ parser implemented by Bikel (2004).
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..., traders say, unable to cool the selling panic in both stocks and futures.

a1a1 a4

a2 a3

b1 b2 b3

b4

Figure 6.1: The output of two SRL systems: system A has two candidates,a1 = “traders” and
a4 = “the selling panic in both stocks and futures”; system B has three argument candidates,
b1 = “traders”, b2 = “the selling panic”, andb3 = “in both stocks and futures”. In addition, we
create two phantom candidatesa2 anda3 for system A that correspond tob2 andb3 respectively,
andb4 for system B that corresponds toa4.

objective function denoted by Equation 6.2, which can be rewritten as follows.

ĉ1:M = argmax
c1:M∈F(PM )

M∑
i=1

Prob(Si = ci), (6.3)

where the linguistic and structural constraints are represented by the filterF . In other words,

this objective function reflects the expected number of correct argument predictions, subject to the

constraints.

When there are two or more argument classifiers from different SRL systems, a joint inference

procedure can take the output estimated probabilities for these candidates as input, although some

candidates may refer to the same phrases in the sentence. For example, Figure 6.1 shows the two

candidate sets for a fragment of a sentence, “..., traders say, unable tocool the selling panic in

both stocks and futures.” In this example, system A has two argument candidates,a1 = “traders”

anda4 = “the selling panic in both stocks and futures”; system B has three argument candidates,

b1 = “traders”,b2 = “the selling panic”, andb3 = “in both stocks and futures”.

If we throw all these variables together into the inference procedure, then the final prediction
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will be more likely dominated by the system that has more candidates, which is system B in this

example. The reason is because our objective function is the sum of the probabilities of all the

candidate assignments.

This bias can be corrected by the following observation. Although system A only has two

candidates,a1 anda4, it can be treated as it also has two additionalphantomcandidates,a2 anda3,

wherea2 andb2 refer to the same phrase, and so doa3 andb3. Similarly, system B has a phantom

candidateb4 that corresponds toa4. Because system A does not really generatea2 anda3, we can

assume that these two phantom candidates are predicted asnull (i.e., not an argument). We assign

the same prior distribution to each phantom candidate. In particular, the probability of thenull

class is set to be 0.55 based on empirical tests, and the probabilities of the rest classes are set based

on their occurrence frequencies in the training data.

Tables 6.12 and 6.13 report the performance of individual systems, as well as the joint system.

The joint system based on this straightforward strategy significantly improves the performance

compared to the two original SRL systems in both recall and precision, and thus achieves a much

higher F1.

Prec Rec F1

Collins’ Parse 75.92 71.45 73.62
Charniak’s Parse 77.09 75.51 76.29

Combined Result 80.53 76.94 78.69

Table 6.12: The performance in CoNLL-04’s evaluation of individual and combined SRL systems

Prec Rec F1

Collins’ Parse 75.87 71.36 73.54
Charniak’s Parse 77.09 75.57 76.32

Combined Result 80.56 76.99 78.73

Table 6.13: The performance in argM+’s evaluation of individual and combined SRL systems
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6.7 Discussion

In this chapter, we show that linguistic information is useful for semantic role labeling, both in

extracting features and deriving hard constraints on the output. We also demonstrate that it is

possible to use integer linear programming to perform inference that incorporates a wide variety

of hard constraints, which would be difficult to incorporate using existing methods.

In addition to building a state-of-the-art SRL system in the CoNLL-04 shared task competition,

we make a fair comparison between the SRL systems using full parse tree information and using

only shallow syntactic information. What we found confirms the necessity of full-parsing for the

SRL problem. In particular, this information is the most crucial in the pruning stage of the system,

and relatively less important to the following stages.

Inspired by this observation, we proposed an effective and simple approach that combines

different SRL systems through a joint inference stage. The combined system significantly improves

the performance compared to the original systems.
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Chapter 7

Conclusions

In the preceding chapters, we proposed a novel propositionalization approach for relational feature

generation. In particular, we defined a language that allows users to generate relational features in

a data-driven way. This approach has served as the fundamental step, feature extraction, in all of

the machine learning based information extraction systems described in this dissertation.

This suggests that the relational learning framework is more flexible and allows the use of

any propositional algorithm within it, including probabilistic approaches. As such, it addresses

the problem of using relational representations within a probabilistic framework in a general and

natural way. It is important when the learned systems are used as individual components in a

complex system, where the probabilities provide crucial information for global inference.

We also proposed two inference procedures: one based on Bayesian networks and the other

using integer linear programming. Although the preliminary result of the Bayesian network ap-

proach is promising, our focus is on the linear programming approach because of its generality and

flexibility; in particular, it supports the ability to incorporate classifiers learned in other contexts

and constraints known at training or decision time; then it reasons with all these for the best global

prediction. This approach is very general, as linear equalities and inequalities are very powerful,

as they are able to encode any Boolean constraints. Our experiments have demonstrated these

advantages by considering the interaction between entity and relation classifiers, and by encoding

complicated linguistic and structural constraints in semantic role labeling.

The success of our approaches have pushed forward the fundamental technologies of infor-
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mation extraction. In addition, it also indicates several directions for long term research. As for

relational feature generation, the most interesting direction is to investigate how the advantages of

our approach can be used to move our learning framework more toward a “real” relational learning

method. In order to reduce the burden of defining the “types” of features, we can further study

automatic ways of abstracting features and learning the RGFs needed for a given problem.

As for the global inference framework, a promising and important direction is to scale up

the approach to allow more variables and constraints. For example, if coreference resolution is

available in the entity/relation recognition task, it is possible to incorporate it in the form of con-

straints that force the labels of the co-referred entities to be the same (but, of course, allowing

the global solution to reject the suggestion of these classifiers). Consequently, this may enhance

the performance of entity/relation recognition and, at the same time, correct possible coreference

resolution errors. Another example is to use chunking information for better relation identifica-

tion; suppose, for example that we have available chunking information that identifies Subj+Verb

and Verb+Object phrases. Given a sentence that has the verb “murder”, we may conclude that the

subject and object of this verb are in a “kill” relation.

Finally, the general inference procedure based on integer linear programming has also facili-

tated the study of the interaction between learning and inference for structured output. For exam-

ple, the trade-off of different learning strategies has been investigated in (Punyakanok, Roth, Yih,

& Zimak, 2005). In the future, we hope to develop a more theoretical understanding along this

research direction.
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Appendix A

Global Inference Using
Integer Linear Programming

This appendix gives a simple but complete step-by-step case study, which demonstrates how we

apply integer linear programming (ILP) to solve a global inference problem in natural language

processing. This framework first transforms an optimization problem into an integer linear pro-

gram. The program can then be solved using existing numerical packages.

The goal here is to provide readers an easy-to-follow example to model their own problems in

this framework. The goal of this appendix is twofold. Section A.1 describe a problem of labeling

entities and relations simultaneously as our inference task. It then discusses the constraints among

the labels and shows how the objective function and constraints are transformed to an integer linear

program. Although transforming the constraints to their linear forms is not difficult in this entity

and relation example, sometimes it can be tricky, especially when more variables are involved.

Therefore, we discuss how to handle different types of constraints in Section A.2.

A.1 Labeling Entities and Relations

Given a sentence, the task is to assign labels to the entities in this sentence, and identify the relation

of each pair of these entities. Each entity is a phrase and we assume the boundaries of these entities

are given.

Figure A.1 gives an example of the sentence “Dole’s wife, Elizabeth, is a native of N.C.” In this
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Dole ’s wife , Elizabeth , is a native of Salisbury , N.C.
 E1         E2                E3

Figure A.1: A sentence that has 3 entities

sentence, there are three entities,Dole, Elizabeth, andN.C.We useE1, E2, andE3 to represent their

entity labels. In this example, possible classes includeother, person, andlocation. In addition,

we would like to know the relation between each pair of the entities. For a pair of two entities

Ei andEj, the relation is denoted byRij. In this example, there will be 6 relation variables –

R12, R21, R13, R31, R23, R32. Since most entities have no interesting relation, the values of most

relation variables should beirrelevant. Besides this special label, the relations of interest in this

example arespouseof andborn in.

variable other person location
E1 0.05 0.85 0.10
E2 0.10 0.60 0.30
E3 0.05 0.50 0.45

variable irrelevant spouseof born in
R12 0.05 0.45 0.50
R21 0.75 0.10 0.15
R13 0.85 0.05 0.10
R31 0.80 0.05 0.15
R23 0.10 0.05 0.85
R32 0.65 0.20 0.15

Table A.1: The confidence scores on the labels of each variable

Assume that magically some local classifiers have already provided theconfidencescores on

possible labels, as shown in Table A.1. If we want to choose the labels that maximize the sum

of those confidence scores, it’s the same as choosing the label that has the highest score for each

variable. The global labeling then becomes Table A.2:

At this point, the problem seems to have been solved by the local classifiers. However, after a

second look at this labeling, we can easily find the inconsistency between entity and relation labels.

For example,R12 cannot beborn in if both entitiesE1 andE2 arepersons. Indeed, there exists
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variable label score
E1 person 0.85
E2 person 0.60
E3 person 0.50
R12 born in 0.50
R21 irrelevant 0.75
R13 irrelevant 0.85
R31 irrelevant 0.80
R23 born in 0.85
R32 irrelevant 0.65

sum 6.35

Table A.2: The global labeling when the individual highest scores are picked

some natural constraints between the labels of entity and relation variables that the local classifiers

may not know or respect. In our example, we know the global labeling also satisfies the following

two constraints.

• if Rij = spouseof, thenEi = person ANDEj = person

• if Rij = born in, thenEi = person ANDEj = location

In summary, the problem we want to solve here really is to find the best legitimate global label-

ing, which is the one that maximizes the sum of the confidence scores, subject to the constraints.

Note that although exhaustive search seems plausible in this toy problem, it soon becomes

intractable when the number of variables or the number of possible labels grows. In the rest of this

section, we are going to show that how we transfer this problem to an integer linear program, and

let the numerical packages help us find the answer.

A.1.1 Indicator Variables

In order to apply (integer) linear programming, both the objective function and constraints have to

be linear. Since the confidence score could be any real number, the original function is not linear.

In addition, the logic constraints we have are not linear as well.
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To overcome this difficulty, the first step of the transformation is to introduce severalindicator

(binary) variables, which represent the assignment of the original variables. For each entity or

relation variablea and each legitimate labelk, we introduce a binary variablexa,k. When the

original variablea is assigned labelk, xa,k is set to 1. Otherwise,xa,k is 0. In our toy example, we

then have27 such indicator variables:

xE1,other, xE1,person, xE1,location,

xE2,other, xE2,person, xE2,location,

xE3,other, xE3,person, xE3,location,

xR12,irrelevant, xR12,spouse of , xR12,born in,

xR21,irrelevant, xR21,spouse of , xR21,born in,

xR13,irrelevant, xR13,spouse of , xR13,born in,

xR31,irrelevant, xR31,spouse of , xR31,born in,

xR23,irrelevant, xR23,spouse of , xR23,born in,

xR32,irrelevant, xR32,spouse of , xR32,born in.

To simplify the notation, letLE = {other, person, location} andLR = {irrelevant, spouseof,

born in} represent the sets of entity and relation labels, respectively. Assumen = 3 means the

number of entities we have in the sentence. The indicator variables we introduce are:

xEi,le , where1 ≤ i ≤ n andle ∈ LE

xRij ,lr , where1 ≤ i, j ≤ n, i 6= j, andlr ∈ LR

A.1.2 Objective Function

SupposecEi,le represents the confidence score ofEi beingle, where1 ≤ i ≤ n andle ∈ LE, and

cRij ,lr represents the confidence score ofRij beinglr, where1 ≤ i, j ≤ n, i 6= j andlr ∈ LR. The
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objective functionf (i.e., the sum of confidence scores) can be represented by

f =
∑

1≤i≤n,le∈LE

cEi,lexEi,le +
∑

1≤i,j≤n,i6=j,lr∈LR

cRij ,lrxRij ,lr

If we plug in the numbers in Table A.1, the functionf is:

f = 0.05 ·xE1,other +0.85 ·xE1,person + · · ·+0.65 ·xR32,irrelevant +0.20 ·xR32,spouse of +0.15 ·xR32,born in

Inevitably, this transformation also brings new constraints, which come from the fact that one

entity/relation variable can only have one label, and must have one label. For example, only exact

one of the labelsother, person, locationcan be assigned toE1. As a result, only one of the indicator

variablesxE1,other, xE1,person, xE1,location can and must be 1. This restriction can be easily written

as the following linear equations.

∑
le∈LE

xEi,le = 1 ∀1 ≤ i ≤ n∑
lr∈LR

xRij ,lr = 1 ∀1 ≤ i, j ≤ n, i 6= j

A.1.3 Logic Constraints

The other reason of introducing indicator variables is to handle the real constraints we have – the

logic constraints between entity and relation labels. In our example, they are:

• if Rij = spouseof, thenEi = person ANDEj = person, where1 ≤ i, j ≤ n andi 6= j

• if Rij = born in, thenEi = person ANDEj = location, where1 ≤ i, j ≤ n andi 6= j

If we treat the indicator variables as boolean variables, where 1 meanstrue and 0 means false,

the constraints can be rephrased as:

xRij ,spouse of → xEi,person ∧ xEj ,person 1 ≤ i, j ≤ n, andi 6= j

xRij ,born in → xEi,person ∧ xEj ,location 1 ≤ i, j ≤ n, andi 6= j
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max
∑

1≤i≤n,le∈LE
cEi,lexEi,le +

∑
1≤i,j≤n,i6=j,lr∈LR

cRij ,lrxRij ,lr

subject to:

xEi,le ∈ {0, 1} ∀1 ≤ i ≤ n (A.1)

xRij ,lr ∈ {0, 1} ∀1 ≤ i, j ≤ n, i 6= j (A.2)∑
le∈LE

xEi,le = 1 ∀1 ≤ i ≤ n (A.3)∑
lr∈LR

xRij ,lr = 1 ∀1 ≤ i, j ≤ n, i 6= j (A.4)

2 · xRij ,spouse of ≤ xEi,person + xEj ,person 1 ≤ i, j ≤ n, andi 6= j (A.5)

2 · xRij ,born in ≤ xEi,person + xEj ,location 1 ≤ i, j ≤ n, andi 6= j (A.6)

Figure A.2: The complete integer linear program

In fact, these two boolean constraints can be modeled by the following two linear inequalities.

2 · xRij ,spouse of ≤ xEi,person + xEj ,person 1 ≤ i, j ≤ n, andi 6= j

2 · xRij ,born in ≤ xEi,person + xEj ,location 1 ≤ i, j ≤ n, andi 6= j

WhenxRij ,spouse of is 0 (false),xEi,person andxEj ,person can be either 0 or 1, and the inequality

holds. However, whenxRij ,spouse of is 1 (true), bothxEi,person andxEj ,person have to be 1 (true).

Therefore, the original logic rule can be represented by this linear inequality.

Transforming the logic constraints into linear forms is the key of this framework. It is not

difficult, but may be tricky sometimes. We will talk more about transforming other types of logic

constraints in Section A.2 later.

A.1.4 Solving the Integer Linear Program Using Xpress-MP

Figure A.2 shows the complete integer linear program. Now, all we need to do now is to apply

some numeric packages, such as Xpress-MP (Xpress-MP, 2004), CPLEX (CPLEX, 2003), or the

LP solver in R (The R Project for Statistical Computing, 2004), to solve it. Transferring the solution

back to the global labeling we want is straightforward – just find those indicator variables that have
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the value 1. In this section, I will demonstrate how to apply Xpress-MP to do the job.

The syntax in Xpress-MP is fairly easy and straightforward. Here I simply list the source code

with some comments, which are the lines beginning with the “!” symbol.

model "Entity Relation Inference"

uses "mmxprs"

parameters

DATAFILE = "er.dat"

Num_Entities = 3;

end-parameters

declarations

ENTITIES = 1..Num_Entities

ENT_CLASSES = {"Other", "Person", "Location"}

REL_CLASSES = {"Irrelevant", "SpouseOf", "BornIn"}

scoreEnt: array(ENTITIES, ENT_CLASSES) of real

scoreRel: array(ENTITIES, ENTITIES, REL_CLASSES) of real

end-declarations

! DATAFILE stores the confidence scores from the local classifiers.

initializations from DATAFILE

scoreEnt scoreRel

end-initializations

! These are the indicator variables.

declarations

ent : array(ENTITIES, ENT_CLASSES) of mpvar

rel : array(ENTITIES, ENTITIES, REL_CLASSES) of mpvar

end-declarations

! The objective function: sum of confidence scores
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Obj := sum(u in ENTITIES, e in ENT_CLASSES) scoreEnt(u,e)*ent(u,e)

+ sum(u,v in ENTITIES, r in REL_CLASSES|u <> v) scoreRel(u,v,r)*rel(u,v,r)

! Constraints (A.1) and (A.2): the variables take only binary values

forall(u in ENTITIES, e in ENT_CLASSES)

ent(u,e) is_binary

forall(e1,e2 in ENTITIES, r in REL_CLASSES | e1 <> e2)

rel(e1,e2,r) is_binary

! Constraints (A.3) and (A.4): sum = 1

forall(u in ENTITIES) sum(e in ENT_CLASSES)

ent(u,e) = 1

forall(u,v in ENTITIES | u <> v) sum(r in REL_CLASSES)

rel(u,v,r) = 1

! Constraints (A.5) and (A.6): logic constraints on entities and relations

forall(e1,e2 in ENTITIES | e1 <> e2)

2*rel(e1,e2,"SpouseOf") <= ent(e1,"Person") + ent(e2,"Person")

forall(e1,e2 in ENTITIES | e1 <> e2)

2*rel(e1,e2,"BornIn") <= ent(e1,"Person") + ent(e2,"Location")

! Solve the problem

maximize(Obj)

! Output the indicator variables that are 1

forall(u in ENTITIES, e in ENT_CLASSES | getsol(ent(u,e)) >= 1)

writeln(u, " ", e)

forall(e1,e2 in ENTITIES, r in REL_CLASSES |

e1 <> e2 and getsol(rel(e1,e2,r)) >= 1)

writeln(e1, " ", e2, " ", r)

end-model
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A.2 Transforming Logic Constraints into Linear Forms

This section summarizes and revises some rules of transforming logic constraints to linear in-

equalities and equalities described in (Guéret, Prins, & Sevaux, 2002). To simplify the illustration,

symbolsa, b, c andx1, x2, · · · , xn are used to represent indicator variables, which are treated as

boolean variables and binary variables at the same time. As usual, the values0, 1 represent the

truth valuesfalseandtrue, respectively.

A.2.1 Choice Among Several Possibilities

In our entity and relation example, we have already processed the constraint “exactlyk variables

amongx1, x2, · · · , xn are true”, wherek = 1. The general form of this linear equation is:

x1 + x2 + · · ·+ xn = k

Another constraint, “at mostk variables amongx1, x2, · · · , xn can be true”, can be represented

in a similar inequality.

x1 + x2 + · · ·+ xn ≤ k

Uninterestingly, “k or more variables amongx1, x2, · · · , xn must be true” will be

x1 + x2 + · · ·+ xn ≥ k

A.2.2 Implications

Implications are usually the logic constraints we encounter. While handling two or three variables

may be trivial, extending it to more variables may be tricky. Here we illustrate how to develop the

ideas from the simplest case to complicated constraints.
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Two variables Suppose there are only two indicator variablesa, b in the implication. The con-

straint,a → b, can be represented asa ≤ b. This can be easily verified by the following truth

table.

a ≤ b b = 0 b = 1

a = 0 true true

a = 1 false true

What if we need to deal with something likea → b̄ ? The value of the compliment ofb is

exactly1− b. Therefore, the corresponding linear constraint isa ≤ 1− b, or a + b ≤ 1.

The relation “if and only if” is straightforward too.a↔ b is identical toa→ b andb→ a. The

corresponding linear constraints area ≤ b andb ≤ a, which is in facta = b.

Three variables We can generalize the implication a little bit to cover three variables. Since

a → b ∧ c can be separated asa → b anda → c, the straightforward transformation is to put two

linear inequalitiesa ≤ b anda ≤ c. Alternatively, the transformation in our entity and relation

example “2a ≤ b + c” also suffice, which is easy to check using a truth table.

Another implication,a→ b ∨ c, can be modeled bya ≤ b + c. This is because whena = 1, at

least one ofb andc has to be 1 to make the inequality correct.

The inverse of the above two implications can be derived using the compliment and DeMor-

gan’s Theorem.b ∧ c→ a is equivalent tōa→ b ∧ c, which isā→ b̄ ∨ c̄. Use the above rule and

the the compliment, it can be modeled by(1−a) ≤ (1−b)+(1−c), or equivalentlya ≥ b+c−1.

b ∨ c → a is equivalent tob → a andc → a, so it can be modeled by two inequalitiesb ≤ a and

c ≤ a. Alternatively, this can be transformed toā → b ∨ c, which isā → b̄ ∧ c̄. Therefore, it can

be modeled by2(1− a) ≤ (1− b) + (1− c), or b+c
2
≤ a.

More variables A logic constraint that has more variables can be complicated. Therefore, we

only discuss some common cases here. Suppose we want to model “ifa, thenk or more variables

amongx1, x2, · · · , xn are true.” We can extend the transformation ofa → b ∨ c, and use the
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following linear inequality.

a ≤ x1 + x2 + · · ·+ xn

k

This transforation is certainly valid fork = 1. It is also easy to verify for other cases. Ifa = 0, then

the right-hand-side (RHS) is always larger or equal to 0, and the inequality is satisfied. However,

whena = 1, it forces at leastk of thex variables are true, which is exactly what we want.

The next case we would like to try is the inverse, which is “ifk or more variables among

x1, x2, · · · , xn are true, thena is true.” This might be somewhat tricker than others. Our first guess

might be:

(x1 + x2 + · · ·+ xn)− (k − 1) ≤ a

Although this may seem correct at the first glance, we observe that the left-hand-side (LHS) will

be larger than 1 when more thank of thex variables are 1. Becausea can be either 0 or 1, this

constraint will be infeasible. In fact, what we really need is tosquashthe LHS to less than 1.

Currently, the largest possible value of the LHS isn − (k − 1). Therefore, dividing the LHS by

n− (k − 1) should suffice.

(x1 + x2 + · · ·+ xn)− (k − 1)

n− (k − 1)
≤ a

We can examine two special cases of this transformation to see if they are correct. Note thatb∨c→

a is indeed one of these cases, given thatn = 2 andk = 1. The linear inequalityb+c
2
≤ a is exactly

the same as what we derived previously. The other special case is “x1∧x2∧· · ·∧xn → a”, which is

equivalent to sayk = n here. Obviously,a ≥ x1+x2+· · ·+xn−(n−1) is correct. One interesting

observation is that the conjunction of a set of boolean variables is the same as the product of the

corresponding binary variables. Therefore, the nonlinear constrainta = x1 · x2 · · ·xn is the same

asa = x1 ∧ x2 ∧ · · · ∧ xn. Its linear transformation is thereforea ≥ x1 + x2 + · · ·+ xn − (n− 1)

anda ≤ x1+x2+···+xn

n
.

Table A.3 summarizes all the transformations we have discussed in this section.
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Original constraint Linear form
Exactlyk of x1, x2, · · · , xn x1 + x2 + · · ·+ xn = k
At mostk of x1, x2, · · · , xn x1 + x2 + · · ·+ xn ≤ k
At leastk of x1, x2, · · · , xn x1 + x2 + · · ·+ xn ≥ k

a→ b a ≤ b
a = b̄ a = 1− b
a→ b̄ a + b ≤ 1
ā→ b a + b ≥ 1
a↔ b a = b

a→ b ∧ c a ≤ b anda ≤ c

or, a ≤ b+c
2

a→ b ∨ c a ≤ b + c
b ∧ c→ a a ≥ b + c− 1
b ∨ c→ a a ≥ b+c

2

if a then at leastk of x1, x2, · · · , xn a ≤ x1+x2+···+xn
k

if at leastk of x1, x2, · · · , xn thena a ≥ x1+x2+···+wn−(k−1)
n−(k−1)

a = x1 · x2 · · ·xn a ≤ x1+x2+···+xn
n anda ≥ x1 + x2 + · · ·+ xn − (n− 1)

Table A.3: Rules of mapping constraints to linear (in)equalities

A.3 Conclusions

Thanks to the theoretical development of integer linear programming in the last two decades and

the tremendous improvement on hardware and software technologies, numerical packages these

days are able to solve many large integer linear programming problems within very short time,

even though ILP is in general NP-hard.

In this appendix, we have provided an entity and relation problem as example, and discussed

several cases for transforming boolean constraints. We hope these illustrations can help the readers

to also apply integer linear programming in their inference problems.

122



Bibliography

Abney, S. P. (1991). Parsing by chunks. In R. C. Berwick, S. P. A., & Tenny, C. (Eds.),Principle-
based parsing: Computation and Psycholinguistics(pp. 257–278). Dordrecht: Kluwer.

Alphonse, E., & Rouveirol, C. (2000). Lazy propositionalisation for relation learning. InPro-
ceedings of the 14th European Conference on Artificial Intelligence (ECAI)(pp. 256–260).
IOS Press.

Bikel, D. (2004, December). Intricacies of Collins’ parsing model.Computational Linguis-
tics, 30(4), 479–511.

Bishop, C. (1995).Neural networks for pattern recognition(Chapter 6.4: Modelling conditional
distributions, pp. 215). Oxford University Press.

Bournaud, I., Courtine, M., & Zucker, J.-D. (2003). Propositionalization for clustering: Sym-
bolic relational descriptions. In Matwin, S., & Sammut, C. (Eds.),The 12th International
Conference on Inductive Logic Programming (ILP-02)(pp. 1–16). Springer-Verlag. LNAI
2583.

Califf, M. (1998, August).Relational learning techniques for natural language information
extraction. Doctoral dissertation, The University of Texas at Austin.

Califf, M., & Mooney, R. (1999). Relational learning of pattern-match rules for information
extraction. InProceedings of the Sixteenth National Conference on Artificial Intelligence
(AAAI-99)(pp. 328–334). AAAI.

Califf, M., & Mooney, R. (2003). Bottom-up relational learning of pattern matching rules for
information extraction.Journal of Machine Learning Research, 2003(4), 177–210.

Carleson, A., Cumby, C., Rosen, J., & Roth, D. (1999, May).The SNoW learning architecture
(Technical Report UIUCDCS-R-99-2101). UIUC Computer Science Department.

Carlson, A., Cumby, C., Rosen, J., Rizzolo, N., & Roth, D. (2004, August). SNoW user manual.
http://l2r.cs.uiuc.edu/∼cogcomp/software/snow-userguide/.

Carlson, A. J., Rosen, J., & Roth, D. (2001). Scaling up context sensitive text correction. In
Proceedings of the National Conference on Innovative Applications of Artificial Intelligence
(pp. 45–50). AAAI.

Carreras, X., & Marquez, L. (2004a). Introduction to the CoNLL-2004 shared tasks: Semantic
role labeling. InProc. of CoNLL-2004(pp. 89–97). Boston, MA, USA.

Carreras, X., & Marquez, L. (2004b). Online learning via global feedback for phrase recogni-
tion. In Proc. of NIPS 2003(pp. ??–??). MIT Press.

123



Charniak, E. (2001). Immediate-head parsing for language models. InProceedings of the 39th
Annual Meeting of the Association of Computational Linguistics(pp. 116–123). Toulouse,
France.

Chein, M., & Mugnier, M.-L. (1992). Conceptual graphs: Fundamental notions.Revue
d’Intelligence Artificielle, 6(4), 365–406.

Chekuri, C., Khanna, S., Naor, J., & Zosin, L. (2001). Approximation algorithms for the met-
ric labeling problem via a new linear programming formulation. InSymposium on Discrete
Algorithms(pp. 109–118).

Chen, J., & Rambow, O. (2003). Use of deep linguistic features for the recognition and labeling
of semantic arguments. InProc. of EMNLP-2003(pp. 41–48). Sapporo, Japan.

Chieu, H., & Ng, H. (2002). A maximum entropy approach to information extraction from semi-
structure and free text. InProceedings of the Eighteenth National Conference on Artificial
Intelligence (AAAI 2002)(pp. 786–791).

Cohen, W. (1995). PAC-learning recursive logic programs: Negative result.Journal of Artificial
Intelligence Research, 2, 541–573.

Cohen, W., & Page, D. (1995). Polynomial learnability and inductive logic programming: Meth-
ods and results.New Generation Computing, 13(3&4), 369–409.

Collins, M. (1999).Head-driven statistical models for natural language parsing.Doctoral dis-
sertation, Computer Science Department, University of Pennsylvenia, Philadelphia.

CPLEX (2003). ILOG, Inc. CPLEX. http://www.ilog.com/products/cplex/.

Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., & Slattery, S.
(1998). Learning to extract symbolic knowledge from the World Wide Web. InProceedings
of AAAI-98, 15th Conference of the American Association for Artificial Intelligence(pp.
509–516). Madison, US: AAAI Press, Menlo Park, US.

Craven, M., & Slattery, S. (2001). Relational learning with statistical predicate invention: Better
models for hypertext.Machine Learning, 43, 97–119.

Cumby, C., & Roth, D. (2000). Relational representations that facilitate learning. InProceedings
of the Conference on Principiles of Knowledge Representation and Reasoning (KR-00)(pp.
425–434).

Cumby, C., & Roth, D. (2002). Learning with feature description logics. InProceedings of the
12th International Conference on Inductive Logic Programming (ILP-02)(pp. 32–47).

Cumby, C. M., & Roth, D. (2003, August). On kernel methods for relational learning. In
Fawcett, T., & Mishra, N. (Eds.),Machine Learning, Proceedings of the Twentieth Inter-
national Conference (ICML 2003)(pp. 107–114). Washington, DC, USA: AAAI Press.

Cussens, J. (1997). Part-of-speech tagging using progol. InInternational Workshop on Inductive
Logic Programming(pp. 93–108). Prague, Czech Republic: Springer-Verlag. LNAI 1297.

DARPA (1995).Proceedings of the 6th message understanding conference. Morgan Kaufman.

De Raedt, L. (1998). Attribute-value learning versus inductive logic programming: The missing
links. In The Eighth International Conference on Inductive Logic Programming (ILP-98)
(pp. 1–8).

124



Dehaspe, L., & Toivonen, H. (1999). Discovery of frequent datalog patterns.Data Mining and
Knowledge Discovery, 3, 7–36.

Even-Zohar, Y., & Roth, D. (2000). A classification approach to word prediction. InProceed-
ings of the first conference on North American chapter of the Association for Computational
Linguistics (NAACL-00)(pp. 124–131).

Even-Zohar, Y., & Roth, D. (2001). A sequential model for multi class classification. InProc.
of the Conference on Empirical Methods for Natural Language Processing (EMNLP)(pp.
10–19).

Flach, P., & Lachiche, N. (1999). 1BC: A first-order Bayesian classifier. In Džeroski, S., &
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Guéret, C., Prins, C., & Sevaux, M. (2002).Applications of optimization with xpress-mp. Dash
Optimization. Translated and revised by Susanne Heipcke.

Hacioglu, K., Pradhan, S., Ward, W., Martin, J. H., & Jurafsky, D. (2004). Semantic role labeling
by tagging syntactic chunks. InProc. of CoNLL-04(pp. 110–113).

Har-Peled, S., Roth, D., & Zimak, D. (2002). Constraint classification: A new approach to
multiclass classification and ranking. InNeural Information Processing Systems(pp. 809–
816). MIT Press.

Hinton, G. (1986, August). Learning distributed representations of concepts. InProceedings of
the Eighth Annual Conference of the Cognitive Science Society(pp. 1–12). Amherst, Mass.

125



Hirschman, L., Light, M., Breck, E., & Burger, J. (1999). Deep read: A reading comprehension
system. InProceedings of the 37th Annual Meeting of the Association for Computational
Linguistics(pp. 325–348).

Khardon, R., Roth, D., & Valiant, L. G. (1999). Relational learning for NLP using linear thresh-
old elements. InProceedings of the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI-99)(pp. 911–917).

Kietz, J., & Dzeroski, S. (1994). Inductive logic programming and learnability.SIGART Bul-
letin, 5(1), 22–32.

Kingsbury, P., & Palmer, M. (2002). From Treebank to PropBank. InProc. of LREC-2002(pp.
??–??). Spain.

Kleinberg, J., & Tardos, E. (1999). Approximation algorithms for classification problems with
pairwise relationships: Metric labeling and markov random fields. InIEEE Symposium on
Foundations of Computer Science(pp. 14–23).

Kramer, S., & De Raedt, L. (2001). Feature construction with version spaces for biochemi-
cal applications. InProceedings of the 18th International Conference on Machine Learning
(ICML-01) (pp. 258–265).

Kramer, S., & Frank, E. (2000). Bottom-up propositionalization. InWork-In-Progress Track at
the 10th International Conference on Inductive Logic Programming(pp. 156–162).

Kramer, S., Lavrac, N., & Flach, P. (2001, September). Propositionalization approaches to re-
lational data mining. In Dzeroski, S., & Lavrac, N. (Eds.),Relational Data Mining(pp.
262–291). Springer-Verlag.

Krogel, M.-A., Rawles, S., Zelezny, F., Flach, P., Lavrac, N., & Wrobel, S. (2003). Comparative
evaluation of approaches to propositionalization. In Horvth, T., & Yamamoto, A. (Eds.),The
13th International Conference on Inductive Logic Programming (ILP-03)(pp. 197–214).
Springer-Verlag. LNAI 2835.

Krogel, M.-A., & Wrobel, S. (2001). Transformation-based learning using multirelational ag-
gregation. In Rouveirol, C., & Sebag, M. (Eds.),The 11th International Conference on In-
ductive Logic Programming (ILP-01)(pp. 142–155). Springer-Verlag. LNAI 2157.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. InProc. of the International Conference on
Machine Learning(pp. 282–289).

Lavrac, N., & Dzeroski, D. (1994).Inductive logic programming: Techniques and applications.
London: Ellis Horwood.

Lavrac, N., Dzeroski, S., & Grobelnik, M. (1991). Learning nonrecursive definitions of rela-
tions with LINUS. InProceedings of the European Working Session on Learning : Machine
Learning (EWSL-91)(pp. 265–281). Springer-Verlag. LNAI 482.

Lavrac, N., Zelezny, F., & Flach, P. (2003). RSD: Relational subgroup discovery through first-
order feature construction. In Matwin, S., & Sammut, C. (Eds.),The 12th International Con-
ference on Inductive Logic Programming (ILP-02)(pp. 149–165). Springer-Verlag. LNAI
2583.

126



Li, S. (2001).Markov random field modeling in image analisys. Springer-Verlag.

Li, X., & Roth, D. (2001). Exploring evidence for shallow parsing. InProc. of the Annual
Conference on Computational Natural Language Learning(pp. 107–110).

Li, Y., Zaragoza, H., Herbrich, R., Shawe-Taylor, J., & Kandola, J. (2002). The perceptron al-
gorithm with uneven margins. InProc. of the International Conference on Machine Learning
(pp. 379–386).

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm.Machine Learning, 2, 285–318.

Lloyd, J. W. (1987).Foundations of logic progamming. Springer-Verlag.

MacKay, D. (1999). Good error-correcting codes based on very sparse matrices.IEEE Transac-
tions on Information Theory, 45(2), 399–431.

Marcus, M. P., Santorini, B., & Marcinkiewicz, M. (1993, June). Building a large annotated
corpus of English: The Penn Treebank.Computational Linguistics, 19(2), 313–330.

Michie, D., Muggleton, S., Page, D., & Srinivasan, A. (1994).To the international computing
community: A new East-West challenge(Technical Report). Oxford University Computing
laboratory, Oxford,UK.

Miller, G., Beckwith, R., Fellbaum, C., Gross, D., & Miller, K. (1990). Wordnet: An on-line
lexical database.International Journal of Lexicography, 3(4), 235–312.

Mooney, R. (1997). Inductive logic programming for natural language processing. InProceed-
ings of the 6th International Workshop on Inductive Logic Programming (ILP-96)(pp. 3–24).
Springer-Verlag. LNAI 1314.

Muggleton, S. (1992). Inductive logic programming. In Muggleton, S. (Ed.),Inductive Logic
Programming(pp. 1–27). Academic Press.

Muggleton, S. (1995). Inverse entailment and Progol.New Generation Computing, 13(3–4),
245–286.

Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods.
Journal of Logic Programming, 20, 629–679.

Munoz, M., Punyakanok, V., Roth, D., & Zimak, D. (1999, June). A learning approach to
shallow parsing. InEMNLP-VLC’99, the Joint SIGDAT Conference on Empirical Methods
in Natural Language Processing and Very Large Corpora(pp. 168–178).

Murphy, K., Weiss, Y., & Jordan, M. (1999). Loopy belief propagation for approximate infer-
ence: An empirical study. InProc. of Uncertainty in AI(pp. 467–475).

Neville, J., Jensen, D., Friedland, L., & Hay, M. (2003). Learning relational probability trees.
In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD-03)(pp. 625–630).

Noreen, E. W. (1989).Computer intensive methods for testing hypotheses. John Wiley & Sons,
Inc.

Pearl, J. (1988).Probabilistic reasoning in intelligent systems. Morgan Kaufmann.

127



Perlich, C., & Provost, F. (2003). Aggregation-based feature invention and relational concept
classes. InProceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-03)(pp. 167–176).

Pradhan, S., Hacioglu, K., Ward, W., Martin, J., & Jurafsky, D. (2003). Semantic role parsing
adding semantic structure to unstructured text. InProc. of ICDM-2003(pp. 629–632).

Pradhan, S., Ward, W., Hacioglu, K., Martin, J. H., & Jurafsky, D. (2004). Shallow semantic
parsing using support vector machines. InProc. of NAACL-HLT 2004(pp. 233–240).

Punyakanok, V., & Roth, D. (2001). The use of classifiers in sequential inference. InNIPS-
13; The 2000 Conference on Advances in Neural Information Processing Systems(pp. 995–
1001). MIT Press.

Punyakanok, V., Roth, D., Yih, W., & Zimak, D. (2005). Learning and inference over con-
strained output. InNational Conference on Artificial Intelligence(pp. ??–??).

Quinlan, J. R. (1990). Learning logical definitions from relations.Machine Learning, 5, 239–
266.

Richards, B., & Mooney, R. (1992). Learning relations by pathfinding. InProceedings of the
Tenth National Conference on Artificial Intelligence (AAAI-92)(pp. 50–55).

Riloff, E. (1993). Automatically constructing a dictionary for information extraction tasks. In
Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI-93)(pp.
811–816).

RISE (1998). A repository of online information sources used in information extraction tasks.
http://www.isi.edu/info-agents/RISE/index.html. University of Southern California, Infor-
mation Sciences Institute.

Rosenblatt, F. (1962).Principles of neurodynamics. New York: Spartan.

Roth, D. (1996, April). On the hardness of approximate reasoning.Artificial Intelligence, 82(1-
2), 273–302.

Roth, D. (1998). Learning to resolve natural language ambiguities: A unified approach. InProc.
National Conference on Artificial Intelligence(pp. 806–813).

Roth, D., Yang, M., & Ahuja, N. (2000). Learning to recognize objects. In2000 Conference on
Computer Vision and Pattern Recognition(pp. 1724–1731).

Roth, D., Yang, M.-H., & Ahuja, N. (2002). Learning to recognize objects.Neural Computa-
tion, 14(5), 1071–1104.

Roth, D., & Yih, W. (2001). Relational learning via propositional algorithms: An information
extraction case study. InProceedings of the Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI-01)(pp. 1257–1263).

Schrijver, A. (1986, December).Theory of linear and integer programming. Wiley Interscience
series in discrete mathmatics. John Wiley & Sons.

Sebag, M., & Rouveirol, C. (1997). Tractable induction and classification in FOL. InProc. of
the International Joint Conference of Artificial Intelligence(pp. 888–892).

128



Soderland, S. (1999). Learning information extraction rules for semi-structured and free text.
Machine Learning, 34(1-3), 233–272.

Soderland, S., & Lehnert, W. (1994). Wrap-up: a trainable discourse module for information
extraction.Journal of Artificial Intelligence Research, 2, 131–158.

Sowa, J. (1984).Conceptual structures in mind and machines. Addison-Wesley.

Srinivasan, A., & King, R. (1996). Feature construction with inductive logic programming:
A study of quantitative predictions of biological activity aided by structural attributes. In
Muggleton, S. (Ed.),The 6th International Conference on Inductive Logic Programming
(ILP-96) (pp. 89–104). Springer-Verlag. LNAI 1314.

Srinivasan, A., Muggleton, S., King, R., & Sternberg, M. (1996). Theories for mutagenicity: a
study of first-order and feature based induction.Artificial Inteligence, 85(1-2), 277–299.

Surdeanu, M., Harabagiu, S., Williams, J., & Aarseth, P. (2003). Using predicate-argument
structures for information extraction. InProc. of ACL 2003(pp. 8–15).

The R Project for Statistical Computing (2004). http://www.r-project.org/.

Tjong Kim Sang, E. F., & Buchholz, S. (2000). Introduction to the CoNLL-2000 shared task:
Chunking. InProc. of the CoNLL-2000 and LLL-2000(pp. 127–132).

Tjong Kim Sang, E. F., & De Meulder, F. (2003). Introduction to the conll-2003 shared task:
Language-independent named entity recognition. InProc. of CoNLL-2003(pp. 142–147).

Voorhees, E. (2000). Overview of the trec-9 question answering track. InThe Ninth Text Re-
trieval Conference (TREC-9)(pp. 71–80). NIST SP 500-249.

Wang, X., & Regan, A. (2000).A cutting plane method for integer programming problems with
binary variables(Technical Report UCI-ITS-WP-00-12). University of California, Irvine.

Wolsey, L. (1998).Integer programming. John Wiley & Sons, Inc.

Xpress-MP (2004). Dash Optimization. Xpress-MP. http://www.dashoptimization.com/products.html.

Xue, N., & Palmer, M. (2004). Calibrating features for semantic role labeling. InProc. of the
EMNLP-2004(pp. 88–94). Barcelona, Spain.

129



Author’s Biography

Wen-tau Yih was born in Yunlin, Taiwan, on January 12, 1973. He graduated from the National

Taiwan University in 1995 with a Bachelor of Science in Engineering. In 1997, he received his

Master of Science in Computer Science from the National Taiwan University. Before relocating

to Champaign, Illinois, USA to pursue further graduate study in Computer Science, Yih joined

the Armed Forces Taoyuan General Hospital as an IT officer with a rank of Second Lieutenant

to fulfill his military obligation. During his study in the Department of Computer Science at

the University of Illinois at Urbana-Champaign, Yih focused his research on Machine Learning

and Natural Language Processing, and has published several academic papers in various highly

selective conferences. Following the completion of his Ph.D., Yih will continue his research career

as a Post-Doc Researcher at Microsoft Research in Redmond, Washington, USA.

130

http://scottyih.org/
http://www.ntu.edu.tw/
http://www.ntu.edu.tw/
http://www.ntu.edu.tw/
http://www.cs.uiuc.edu/
http://www.uiuc.edu/
http://research.microsoft.com/

	List of Tables
	List of Figures
	List of Abbreviations
	Publication Note
	Chapter 1 Introduction
	Overview

	Chapter 2 Background
	Sparse Network of Winnows (SNoW)
	Bayesian Network
	Linear Programming Formulation
	Linear Programming
	Integer Linear Programming


	Chapter 3 Relational Learning via Propositionalization
	Overview
	The Learning Framework

	Related Work -- Propositionalization
	Propositional Relational Representations
	Graphical Representation of Relational Data
	Relational Language
	Relation Generation Functions
	Application Examples

	Discussion

	Chapter 4 Extracting Entities
	Overview
	Task Description and System Design
	Data and Templates
	Extracting Relational Features
	Applying Propositional Learning Algorithms
	Two-stage Architecture

	Experimental Results
	Comparison to Other Systems
	Pruning Features and Negative Examples

	Discussion

	Chapter 5 Entity & Relation Recognition
	Overview & Related Work
	Global Inference of Entities/Relations
	Bayesian Network Inference
	Learning Basic Classifiers
	Bayesian Inference Model

	Integer Linear Programming Inference
	Experiments
	Experiments for the Bayesian Network Based Inference
	Experiments for Integer Linear Programming Inference
	Results

	Discussion

	Chapter 6 Semantic Role Labeling
	Overview and Related Work
	Semantic Role Labeling (SRL) Task
	SRL System Architecture
	Pruning
	Argument Identification
	Argument Classification
	Inference

	Experimental Results in CoNLL-04
	The Necessity of Syntactic Parsing
	Experimental Setting
	Argument Classification
	Argument Identification
	Pruning

	Joint Inference
	Discussion

	Chapter 7 Conclusions
	Appendix A Global Inference Using Integer Linear Programming
	Labeling Entities and Relations
	Indicator Variables
	Objective Function
	Logic Constraints
	Solving the Integer Linear Program Using Xpress-MP

	Transforming Logic Constraints into Linear Forms
	Choice Among Several Possibilities
	Implications

	Conclusions

	Bibliography
	Author's Biography

